БИОЗЕМЛЕДЕЛИЕ КАК ИННОВАЦИОННАЯ ОСНОВА ЭКОЛОГИЧЕСКИ БЕЗОПАСНОГО СЕЛЬСКОХОЗЯЙСТВЕННОГО ПРОИЗВОДСТВА

Юрий Степанович Ларионов

Сибирская государственная геодезическая академия, 630108, Россия, г. Новосибирск, ул. Плахотного, 10, доктор сельскохозяйственных наук, профессор кафедры экологии и природопользования, тел. (383)351-19-24, e-mail: larionov42@mail.ru

Сергей Львович Петуховский

Омский государственный аграрный университет, 640008, Россия, г. Омск, ул. Институтская площадь 2, доцент, кандидат сельскохозяйственных наук, кафедры селекции, генетики и физиологии растений

Валентин Геннадьевич Никитенко

Новосибирский государственный технический университет, 630073, Россия, г. Новосибирск, пр. К. Маркса, 20, аспирант, тел. 8-952-903-93-21, e-mail: mozenrath@inbox.ru

Предложена новая парадигма земледелия на основе биоземледелия и закона плодородия почв, учитывающая эволюционнные и экологические принципы управления плодородием почв, продуктивностью растений и устойчивостью агроценозов. Они представляют собой новые инновационные подходы к сельскохозяйственному производству.

Ключевые слова: биоземледелие, минеральные удобрения, плодородие почв, эволюция, экология, корнеоборот.

BIOZEMLEDELIE AS INNOVATIVE BASED ON ECOLOGICALLY SAFE AGRICULTURAL PRODUCTION

Yuri S. Larionov

Siberian State Academy of Geodesy, 630108, Russia, Novosibirsk, 10 Plakhotnogo St., Doctor of Agricultural Sciences, Department of Ecology and Nature Management, tel. (383)351-19-24, e-mail: larionov42@mail.ru

Sergei L. Petukhovsky

Omsk State Agrarian University, 640008, Russia, Omsk, ul. Institute's area 2, Associate Professor, Candidate of Agricultural Sciences, Univ. Breeding, Genetics and Plant Physiology

Valentin G. Nikitenko

Novosibirsk State Technical University, 630073, Russia, Novosibirsk, avenue Marx, 20a graduate student, tel. 8-952-903-93-21, e-mail: mozenrath@inbox.ru

A new paradigm of agriculture on the basis of law and biozemledeliya soil fertility, taking into account the environmental principles evolyutsionnnye and soil fertility management , plant productivity and sustainability agrotcenozov . They represent a new and innovative approaches to agricultural production.

Key words: biozemledelie, fertilizers, soil fertility, evolution, ecology, korneoborot.

В настоящее время с позиций ряда сельскохозяйственных, экономических и социальных наук сельскохозяйственная отрасль переживает глубокий кризис[5,9,10,12,13,15]. Кризис – крайнее обострение противоречий в социально-экономической системе (организации), угрожающее ее жизнестойкости в окружающей среде [2].

В ходе кризиса оказываются нежизнеспособными самые закономерности, базируются организация, на которых технология производства, прибыльного использования перспективы капитала, распределение стоимости и структура общественного спроса [2,3,8,12]. Согласно диалектике развития кризис – неизбежное явление или веха развития любой социально-экономической системы. Причем это характерно для системы любого масштаба, начиная от мелкого предприятия из нескольких человек, отрасли и вплоть до государства, а, возможно, человечества в целом. Если понимать кризис таким образом, можно констатировать то обстоятельство, что опасность кризиса существует всегда и его необходимо предвидеть, прогнозировать и разрабатывать новые дальнейшего развития социально-экономической отрасли, предприятия. Оценивая современное состояние любой отрасли через призму инноваций, можно определить её приоритетные направления развития или наличие и остроту кризиса, рассматривая ее с позиции теории систем, базируясь на концептуальной основе развития любой отрасли или предприятия [2, 3, 8,12,15].

Все это имеет место быть в современном сельскохозяйственном производстве[9,10,15].

По мнению, широкого круга, ученых сельскохозяйственного профиля, обеспечение населения Российской Федерации и планеты в целом продуктами питания невозможно без химизации сельского хозяйства[5,7,11 и др.]. Под этим подразумевается широкое применение минеральных удобрений и пестицидов. В настоящее время объемы их производства достигли внушительных размеров и продолжают увеличиваться, а вопросы химизации во всех странах решаются на уровне государственных программ.

Однако, уже сегодня ясно, что использование минеральных удобрений и пестицидов, в сочетании с глубокой обработкой почвы, стали причиной снижения плодородия почв, загрязнения окружающей среды и продуктов питания [13,15]. Эти технологические приемы необходимо рассматривать не только как факторы повышения урожайности сельскохозяйственных культур, но и как факторы, нарушающие глобальные круговороты веществ в биосфере. Связано это с тем, что масштабы сельскохозяйственных преобразований носят планетарный характер. Дальнейшее использование химических средств, ставит под сомнение не только производство продуктов питания, но и устойчивое состояние биосферы, так как не гарантирует сохранение плодородия почв [9,10].

В последние годы усиленно пропагандируется как особое новшество – точечное (прецизионное) земледелие, т.е. адресное внесение минеральных удобрений и гербицидов на основе координат GPS по пестроте почвы по плодородию и засоренности [1]. Но это та же парадигма - повышения

урожайности за счет химизации, просто, более экономно вносятся химические средства на основе учета пестроты плодородия и засорения полей.

эффективности применения минеральных показало, что из общего количества внесенных в почву, например азотных удобрений сельскохозяйственными растениями усваивается около 40%. Остальная часть подвергается иммобилизации, улетучивается в виде газообразных соединений и вымывается из пахотного горизонта. Из общего количества биогенных веществ, поступающих в водоемы, азот и фосфор, теряемые с аграрных территорий с жидким и твердым стоком, могут составить до 70%. Фосфорные удобрения подвержены вымыванию из почв в меньшей степени (от 0,2 до нескольких килограммов в год с гектара), но внесение их увеличивает потери в 1,5-3,7 раза [13]. Отрицательное действие применения минеральных удобрений на растение и почву обусловлено как подкислением почвенного раствора, так и выщелачиванием оснований из пахотного горизонта. Происходящее при этом увеличение подвижности многих соединений алюминия, марганца, железа угнетает рост растений. По сведениям [13] усиливается вымывание кальция и магния, увеличивается подвижность некоторых микроэлементов. Это ведет к возникновению в пахотном горизонте дефицита B, Zn, Cu, Mo, Mn и др. Дефицит микроэлементов влияет на процессы фотосинтеза, передвижение растений к недостаточному снижает устойчивость избыточному увлажнению, высоким и низким температурам. Эти нарушения в обмене веществ являются причиной снижения активности ферментных систем и, в конечном счете, адаптивности и продуктивности растений [10,13].

Необходимо отметить, что основным показателем, характеризующим почв, является ИХ высокая биологическая содержание в них гумуса (сложное соединение органической и минеральной частей почвы) и подвижных органических веществ. Плодородные почвы, как правило высокогумусированные, имеют благоприятную для растений водоудерживающую физическую структуру, хорошую способность, достаточный запас питательных веществ, сбалансированное биоразнообразие микробного сообщества способность аборигенного противостоять фитопатогенной и патогенной биоте, как местной, так и интродуцированной [5-7,10,14,15,]. Это очень важное эволюционно - и эколого-генетическое свойство в целом характеризует биологическую активность [6,10,13,15].

Учитывая роль инноваций в возникновении кризисов на предприятиях, необходимо использовать инновации как один из инструментов в управления кризисами, осуществлять преобразования как в организационной структуре организации, фирмы или отрасли, так и в научно методическом обеспечении основываясь на новых парадигмах.

В подобном комплексном подходе особенно остро нуждается современное сельскохозяйственное производство, которое находится на грани глубокого научно-теоретического, а также экономического и

технологического кризиса, поскольку его интенсификация на основе широкой химизации нарушила естественный эволюционно-экологический процесс поддержания плодородия почв. Это привело к деградации почв и повсеместному падению ИХ плодородия, сельскохозяйственной продукции, её химическому загрязнению и многим другим негативным последствиям [10,13]. Необходимы инновационные базирующиеся новых подходы, на концепциях сельскохозяйственного производства. К числу таких концепций относится биоземледелие, которое призвано остановить деградацию почв, удорожание сельскохозяйственной продукции и снять другие негативные последствия современного земледелия[10,13,15].

Биоземледелие — это управляемый процесс возделывания культурных растений и повышения плодородия почвы в конкретных агроэкологических условиях, основанный на сложном взаимодействии между собой почвы с различными видами растений, животных и микроорганизмов, обеспечивающих их защиту от болезней, вредителей и сорных растений биологическим путем[9]. Почва — это совокупность живой и косной материи, обеспечивающая устойчивую взаимосвязь их в биосфере планеты на основе круговорота вещества и энергии [6,10].

Фактически, биоземледелие преследует цель не только повышение урожайности, возделываемых сельскохозяйственных растений, а постоянного сохранения и наращивания плодородия почв и защиты растений на эволюционном и эколого-генетическом принципах.

Эти принципы подводят новую парадигму под сельскохозяйственное производство и требуют разработки новых подходов к социально-экономическому развитию современного сельского хозяйства на основе использования инноваций, как фактора выхода из кризиса.

Нам представляется, что биоземледелие, как эволюционно-экологически обоснованное ведение сельскохозяйственного производства, т.е. на основе новой парадигмы необходимо осуществить путем внедрения инновационных подходов в организационную и технологическую политику отрасли. Это может быть представлено следующим образом.

Перевод производства сельскохозяйственной продукции, в частности растениеводства, на биоземледелие как системный управляемый процесс повышения плодородия почв на основе естественно возобновляемых минеральных и органических ресурсов, используемых в сельскохозяйственном производстве включающий систему чередования культур на основе корнеоборота. В эту систему в совокупности входят эдафитный и эпифитный комплексы, обеспечивающие максимальное использование агроэкологических ресурсов почвенно-климатической зоны хозяйства.

Все это опирается на Закон плодородия почвы биологического земледелия: «Сохранение и повышение плодородия почв в любых агроэкологических условиях осуществляется путём поддержания корнеоборота растений в тесном взаимодействии с другими компонентами биоты (бактерии, грибы, водоросли, почвенные животные), воздуха и

водообмена (водооборота) между живой и косной материей экосистемы» [9,10].

Какова роль корнеоборота В новой инновационной системе биоземледелия? Он обеспечивает ежегодный кругооборот питания, повышение плодородия почв и фитосанитарное состояние почвы за счет смены культур с различными типами корневых систем и корневыми выделениями. Корнеоборот ежегодно осуществляет подъем элементов минерального питания из нижних слоев почвы в верхние, вследствие этого необходимость использования дорогостоящих минеральных удобрений (материнская порода является неисчерпаемым источником элементов минерального питания – фосфора, калия и др. для растений). В корнеоборот обязательно входят бобовые культуры, обеспечивающие на основе симбиоза с бактериями фиксацию и накопление азота из атмосферы. Пожнивные и поукосные культуры в биоземледелии выполняют функцию не только корнеоборота, но и поставщиков дополнительной массы органики в почву, аэрируемости её и как мульчирующего агента, для сохранения влаги в почве, и стабилизации продуктивности агроценоза.

Вторым, обязательным компонентом системы биоземледелия, наряду с корнеоборотом, является эдафитный блок, включающий создание и использование микробиологических препаратов (консорциумов) и почвенной фауны, ускоряющих разложение органических остатков и усиливающих фиксацию азота бобовыми культурами, а также защиту корней от болезней и вредителей в почве.

третьим обязательным компонентом биоземледелия эпифитный блок, включающий биометоды защиты растений - экологически безопасные саморегулируемые биологические способы защиты культурных болезней, растений от вредителей И сорных растений. консорциумы, функционирующие на принципе действия естественного элементом технологии отбора[9,10] являются важным возделывания сельскохозяйственных культур, как регуляторы численности и подавления возбудителей болезней, фитофагов. сорных растений, основывается на создании предпосылок для повышения плодородия почв и получения безопасной продукции экологически ДЛЯ человека. биоземледелии широко нужно использовать агротехнические методы борьбы с сорными растениями, болезнями и вредителями, а также различные биологически активные препараты для управления ростом, развитием и продуктивностью возделываемых культур[10,14].

Важным инновационным блоком новой стратегической системы биоземледелия является разработка и внедрение мониторинга состояния почв управления ГИС-систем [4] методов адаптивностью И возделываемых сортов путем широкого использования рострегулирующих препаратов, новых информационных компьютерных обеспечивающих гармонизацию роста и развития возделываемых растений, повышения биологической полноценности и урожайных свойств семян возделываемых сортов, снятия стрессовых воздействий на возделываемые растения, естественного и искусственного происхождения [10].

Сегодня функционирование отрасли сельского хозяйства невозможно без создание инфраструктуры, т.е. агрогородков с развитой социальной сферой, структурой и инфраструктурой для цивилизованной жизни высококвалифицированных специалистов и рабочих, обслуживающих не менее 150-200 тысяч га пашни, необходимого шлейфа скота и птицы, а также перерабатывающих и других предприятий, обеспечивающих круглогодичную занятость и профессиональное разнообразие жителей агрогородков.

Таким образом, в сельскохозяйственном производстве необходимо ставку на принципиально новые инновационные решения, делать обеспечивающие обязательное повешение плодородия почв. Однако их внедрение связано с рядом организационных, финансовых, технологических и кадровых проблем. Зачастую внедрение инноваций разрешает один кризис, может способствовать возникновению другого, связано интенсификацией совершенствование производства будет c инновационных процессов и той научной теоретической основой, на которую они базируются. Это должны быть принципиально новые парадигмы.

Всё вышесказанное свидетельствует о предстоящей глубокой широкомасштабной государственной работе по научному и технологическому обеспечению биоземледелия как в масштабах отдельных регионов, так и всей страны.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Абрамов Н.В., Семизоров С.А., Шерстобитов С.В. Прецизионное земледелие в Северном Зауралье: элементы внедрения. // Тез. Докл.Ш Международн. Конф. Окружающая среда и менеджмент природных ресурсов. Тюмень, 6-8.11-2012. С. 13.
- 2. Антикризисное управление : учеб. пособие / под ред. Э.М. Короткова. М. : ИНФРА-М, 2002. 432 с.
- 3. Критические технологии рационального природопользования на северных интенсивно осваиваемых территориях Урала и Западной Сибири / А. И. Гагарин, В. Б. Жарников, Н. А. Сурков, Ю. В. Лебедев, Т. А. Лебедева // Вестник СГГА. 2011. Вып. 3 (16). С. 78–83.
- 4. Карпик А. П., Осипов А. Г., Мурзицев П. П. Управление территорией в геоинформационном дискурсе: монография. СГГА, Новосибирск, 2010. 280 с.
- 5. КирюшинВ.И. Теория адаптивно-ландшафтного земледелия и проектирование агроландшафтов. /В. И. Кирюшин, М. «КолосС» 2011.- 443с.
- 6. Ковда В. А. Как помочь нашим черноземам // Наш современник. 1986. № 7. С. 117—128.
- 7. Красницкий В. М. Плодородие почв Сибирского Федерального округа в аспекте сегодняшнего дня. Сб. материалов межд. народн. н.-практ. конф. Посвящ. 75-лет. Ю. И. Ермохина /В.М. Красницкий, Ю. И. Ермохин/, Омск, Омский ГАУ, 2010. С.128-138.
- 8. Креймер М. А. Экономические задачи территориального планирования и экологическое обоснование судьбы Земли // Вестник СГГА. 2012. Вып. 3 (19). С. 79–88.
- 9. Ларионов Ю. С. Альтернативные подходы к современному земледелию и наращиванию плодородия почв (новая парадигма) // Вестник СГГА. 2013. Вып. 1 (21). С. 49–60.
- 10. Ларионов Ю.С. Биоземледелие и закон плодородия почв. Сибирская гос. геодез. академ., Омский ГАУ, Омск, 2012.- 207с.

- 11. Милащенко Н.3. Плодородие почв центральный вопрос земледелия //Земледелие. 1999, №5. С. 15-16.
- 12. Нитяго И. В. Экономическое будущее Сибири: проблемы и перспективы // Вестник СГГА. 2013. Вып. 2 (22). С. 118–125.
- 13. Овсянников Ю.А.Теоретические основы эколого-биосферного земледелия./Ю.А. Овсянников, Екатеринбург, изд. Уральского ГУ, 2000. -63с.
- 14. Чулкина В.А. Фитосанитарная оптимизация растениеводства в Сибири. 3-х томник: зерновые культуры (I), крупяные, зернобобовые и кормовые культуры (II), технические культуры (III). / В.А. Чулкина, В.М. Медведчиков, Е.Ю. Торопова, Г.Я. Стецов, Ю.И. Чулкин, В. И. Воробьёв, под ред. П.Л. Гончарова Новосибирск, 2001.
- 15. Яшутин Н. В. Биоземледелие (научные основы, инновационные технологии и машины) / Н. В. Яшутин, А.П. Дробышев, А. И. Хоменко Барнаул, изд. АГАУ, 2008. 191с.

© Ю. С. Ларионов, С. Л. Петуховский, В. Г. Никитенко, 2014