NPOB. 1951 F

ТРУДЫ

Среднеавиатского Научно-исследовательского Института Ирригации

PROCEEDINGS

of the Middle Asia Scientitic Research Institute of Irrigation

Issue 9

Выпуск 9

626

Е. ЗАМАРИН

626.

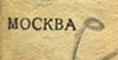
гидротехнические сооружения

Tom III

гидротехнический расчет сооружений

Банвлию тека Ср. - Ан Паучно - Исследов. Ин-та Перигации (ГАНИИРИ) Ташкент, Леслинская 22.

IRRIGATION WORKS


Volume III

HYDROTECHNICAL CALCULATION OF IRRIGATION WORKS

by E. ZAMARIN

Объединение Государственных Издательств Сраднеазиатское Отделение 1933

ТАШКЕНТ

ГЛАВАІ

Введение.

§ 1. Задачи гидротехнического расчета

Проницаемость грунтов основания под гидротехническое сооружение при наличии воды, для управления которой построено сооружение, всегда вызывает просачивание части ее в грунт. Просочившаяся вода, двигаясь по порам грунта, оказывает давление на части сооружения (флютбет, подпорные стены, облицовку откосов и другие); с другой стороны, при некоторых условиях поток грунтовых вод может создать состояние, угрожающее прочности грунта.

Гидротехнический расчет имеет целью поверку принятых или установление рациональных размеров частей сооружения, подвергающихся действию потока грунтовых вод. Отсюда следует необходимость достаточно точного выявления элементов движения грунтовых вод и точных методов расчета размеров частей

сооружения.

Второе условие с приемлемой точностью выполняется строительной механикой; первое же требует наличия точной и простой (не в ущерб точности) теории

движения грунтовых вод в районе гидротехнических сооружений.

Различают два вида движения грунтовых вод врайоне сооружения. Первое движение наблюдается тогда, когда просачивающаяся в грунт вода заполняет все поры его и соединяется с естественными грунтовыми водами местности; второе движение наблюдается тогда, когда просачивающаяся в грунт вода не заполняет всех пор грунта основания и движется отдельными струйками до соединения их с грунтовыми водами местности.

Первый вид движения рассматривают в двух формах: как напорное, когда подземное русло потока заключено в жесткие стенки, и движение грунтовой воды подобно движению ее в трубах (водопровода и т. п.), и как свободное, когда грунтовая вода движется, не будучи заключенной со всех сторон в жесткие стенки: свободная поверхность ее, располагающаяся по так называемой кривой де-

прессии, обычно испытывает атмосферное давление.

В зависимости от вида движения грунтовых вод, изученность их различна. Наиболее подробно изучено напорное движение в пористых сыпучих грунтах—в условиях плоской задачи². Свободное движение изучено лишь в простейших случаях (движение воды к галлереям, колодцам и т. д.), по преимуществу тоже в условиях плоской задачи (за исключением колодцев). К разрешению пространственных задач теория только приступает, не давая еще законченных ответов.

Движение грунтовой воды не сплошным потоком, а по отдельным порам сыпучих грунтов, только еще начинает изучаться; оно еще не облечено в мате-

матические зависимости, хотя бы и очень приближенные.

В действительности число их больше двух; гидротехническим расчетом охватываются пока только два вида движения.

² Когда рассматривается движение только в плоскости УОХ; при этом считается, что в любой плоскости, паравлельной рассмотренной, движение будет аналогично рассмотренному; таким образом, движение не зависит от координаты Z.

Движение грунтовых вод следует зависимости $\alpha v + \beta v^2 = I \dots$ где а и β — эмпирические коэфициенты; скорость фильтрации; I — уклон потока. Под скоростью фильтрации подразумевают фиктивную среднюю скорость воды, подсчитанную по всему сечению потока (то-есть по площади сечения пор и частиц грунта). Так, если поток движется в трубе, заполненной грунтом, то скорость фильтрации будет равна где Q - расход фильтрующейся воды, d - диаметр трубы. Если известна порозность грунта р, то есть объем пор в процентах к общему объему грунта, то средняя скорость движения воды в порах и будет так связана с у При малых уклонах и при небольших порах скорость у невелика; коэфициент В также мал; поэтому, пренебрегая произведением Вуг, уравнение (1) можно переписать в следующее основное уравнение для движения грунтовых вод $v = KI \dots (4)$ Уравнение (4) называется законом Дарси, а величина К - коэфициентом фильтрации; очевидно, К есть скорость фильтрации при уклоне I = 1. Коэфициент фильтрации находится из опыта (полевого или лабораторного) или по эмпирическим формулам, часть которых (именно менее неточные) приводится ниже. Для средних и крупных песков применима измененная мною формула А. Газена для t = 10°C $K = 27 C d_H^2$ мм в секунду (5), где фн — действующий диаметр по Газену в миллиметрах, то есть тот средний диаметр частиц грунта, меньше которого по весу частиц содержится 10%; формула дана для действующего диаметра от 0,1 до 3 мм; С - коэфициент, учитывающий загрязненность песка пылеватыми и глинистыми частицами в зависимости от их количества C = 1,2-1,1-1,0-0,9A = 0.5 - 1.5 - 3.0 - 5.0где А - процентное содержание по весу частиц с диаметром 0 - 0,05 мм. Для песков с большим загрязнением и для легких суглинков, искусственно уложенных, применима измененная мною формула профессора Крюгера для $t = 10^{\circ}C$ $K = \frac{2,8 \cdot p \cdot 10^4}{\Theta^2}$ мм в секунду (6), где р — общая порозность грунта; Θ — так называемая удельная поверхность, то есть сумма поверхностей в квадратных сантиметрах частиц, содержащихся в одном кубическом сантиметре грунта; она находится из формулы $\Theta = 60 (1-p) \Sigma \frac{g}{\partial} \dots (7),$

для g — процентного содержания фракций грунта средним диаметром θ мм. Подсечеты по формулам (5-7) в качестве примера приведены ниже для грунта следующего механического состава и при порозности p=0,43.

d мм	0,50-0,25	0,25-0,05	0,05-0,01	0,01—0
	1			1
gº/6	67,1	31,1	0,3	1,5
дер	0,375	0,150	0,030	0,005
g:0	1,79	2,07	0,10	3,00

Огсюда

$$\Theta = 60.(1 - 0.43).6.96 = 237$$
 cm²

Действующий диаметр по Газену находится из таблицы механического состава линейным интерполированием

$$d_H = 0.05 + \frac{10 - (0.3 + 1.5)}{31.1} (0.25 - 0.05) = 0.102 \text{ mm}.$$

Для лессовых грунтов с естественной структурой коэфициенты фильтрации должны находиться из опытов (откачкой в поле или с монолитами). Большое различие в размерах отдельных пор грунта не получает отражения в эмпирических формулах коэфициента фильтрации, учитывающих лишь общую порозность.

Формулы коэфициента фильтрации для лессовых грунтов с ненарушенной

структурой дают поэтому весьма приближенно его значение

$$K = \frac{A \cdot p.10^4}{\Theta^2}$$
 мм в секунду (8),

где множитель А изменяется от 12 до 25 для температуры 10°С. Для искус-

ственно уложенного лесса коэфициент А равен около 1,8-2,3.

В предыдущих формулах величина коэфициента фильтрации давалась для температуры 10°С. Малые скорости движения грунтовых вод позволяют рассматривать это движение как ламинарное (струйчатое), то есть существенно зависящее от вязкости. А так как вязкость зависит от температуры воды, то отсюда получается зависимость коэфициента фильтрации от температуры

$$K_t = \tau K_{10} \dots (9),$$

где K₁₀ — коэфициент фильтрации для температуры 10°.

Величины температурного коэфициента приведены в таблице 2.

				1 40%	ица 2
t	2	5	10 —	15	20
7	0,79	0,87	-1	1,13	1,27

ГЛАВА ІІ

Расчет флютбетов шлюзов

§ 3. Общее

В настоящей главе рассматривается расчет флютбетов шлюзов в условиях напорного движения, которое может быть при высоком стоянии грунтовых вод местности и наблюдаться преимущественно под водозаборными сооружениями, под речными сооружениями (плотины), под головными регуляторами ветвей и глубоко заложенных распределителей (в ирригации) и под осущительными сооружениями.

Чем шире шлюз, тем движение грунтовых вод под ним ближе к напорному, если предположить, что область движения жестко ограничивается слоем водоне-проницаемого грунта, на котором лежит водопроницаемый грунт. Для нешироких шлюзов движение грунтовой воды за стенами сооружений, совершаемое как свободное, скажется на движении ее под флютбетом, отклоняя его от условий напорного движения. Для узких шлюзов влияние свободного движения за стенами настолько возрастает, что движение под флютбетом можно рассматривать как близкое к свободному.

До сих пор расчет флютбетов, сводившийся к установлению длин его частей и их толщины, почти исключительно исходил из условий напорного движения, считая, что оно полностью и точно выполняется. Мы этот случай рассмотрим так же, как и остальные, когда напорное движение под флютбетом не будет точно выполняться.

Флютбет, образуя ложе для проходящего через сооружение потока, по условиям своей работы разделяется на три части—понурную, водобойную и сливную. Такое, достаточно установившееся, разделение флютбета на части нельзя признать удачным. Не останавливаясь на классификации отдельных частей флютбета, крат.

ко отметим условия работы каждой его части.

Понур, укрепляя русло перед сооруженйем от размыва надземным потоком, в то же время, вследствие своей водонепроницаемости, удлиняет путь подземного потока (под сооружением) и тем самым погащает часть действующего напора, что ведет к облегчению размеров водобойной части флютбета. Так как при наличии воды перед сооружением давление ее на понур сверху больше, чем давление ее снизу, то толщина его определяется конструктивными соображениями; длина понура определяется из условий неразмываемости грунта перед ним.

Водобой воспринимает удары падающей воды (в перепадах, в шлюзах при падениях воды через шандоры и т. п.), погашает энергию надземного потока и образует безопасные условия для подземного потока. Толщина его определяется расчетом на устойчивость против выпирающего давления воды снизу (см. ниже); длина находится из условий погашения энергии надземного потока и создания

допустимого уклона для движения грунтового потока.

Сливная часть (рисберма), большею частью укрепляемая водопровицаемой одеждой, создает условия плавного перехода от повышенных скоростей в конце водобоя к бытовым в конце рисбермы (начале канала) и защищает лежащий под ней грунт от вымыва подземным потоком (обратными фильтрами, песчаными тюфяками и т. п.).

Зубья, шпунты ставятся большею частью для увеличения длины фильтрацион пого пути, т. е. для понижения уклона подземного потока до допускаемых пределов и для ограждения и защиты флютбета от разрушения при размывах грунта.

§ 4. Прием копирования

Наиболее старый прием определения (вернее, назначения) размеров сооружения заключался в том, что проектируемые размеры выбирались "по опыту существующих сооружений". Далее для отдельных частей предлагались ориентировочные соотношения между размерами их и глубиной воды в верхнем бьефе; так, например, по Ф. Г. Зброжеку для сооружений на водных путях длина повура L₁, водобоя L₂ и сливной части L₃ назначалась из соотношений:

$$L_1 =$$
от одного до двух H (напоров) $L_2 = (3-5) \ H$ $L_1 = (6-7) \ H$

Толщина флютбета определялась по напору воды снизу, принимаемому равным или глубине воды в нижнем бьефе плюс толщина флютбета, или глубине воды в верхнем бьефе, увеличенной на толщину флютбета "в зависимости от водопроницаемости основания". Другие авторы учитывали давление воды на флютбет по трапеции; например, по Ребоку, для получения эпюры давлений на флютбет следовало строить трапецию длиною, равной длине флютбета, и с высотами сто-

рон, равных напорам верхнего и нижнего бъефов.

Таким образом, рассмотренным приемом весь "расчет" сводился к поверке статической устойчивости флютбета сооружения и копированию пропорций уже существующих сооружений. Гидравлический расчет совершенно отсутствсвал—фильтрационные особенности грунтов оснований этим приемом нисколько не учитывались; мало того, выбор той или иной эпюры давлений, в зависимости от водопроницаемости грунта основания, явно неверен по существу, так как распределение давления воды по флютбету не зависит от фильтрационных свойств грунта оснований.

Прием копирования нельзя иначе рассматривать как цеховщину, при которой выработанные практикой навыки, передаваемые по наследству, перерастают в ритуал, не допускающий отступлений ("так заведено испокон веков"). Аргументы сторонников приема копирования, основывающиеся на факте прочности давно выстроенных сооружений, односторонни и лишены диалектики. Сооружения эти и не могут не быть прочными: они должны быть прочными, за что говорит тот "запас прочности", с которым они были построены и который теперь совершенно недопустим. Рационализация сооружений, снижение их стоимости, снижение расхода стройматериалов и коренной пересмотр сроков амортизации, то есть сроков службы сооружений, должны и могут дать не менее прочное сооружение, чем рансе.

Неудивительно, что у сторонников способа копирования так характерно неверие (почти полное отрицание), проявляемое к теоретическим исследованиям, ко-

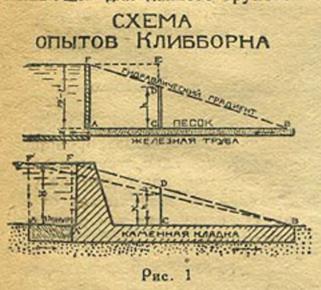
торым они отводят лишь "увязку" без определенных заданий.

Из сказанного не следует заключать о полной непригодности приема копирования. Опыт старой практики необходимо использовать, поставив его на должное место.

Рассматриваемый прием можно использовать для ориентировочного назначения длин частей флютбета. Назначение размеров флютбета зависит от условий работы сооружения и его конструкции: так, в водоподъемных плотинах (типа водосливных) понурная часть может отсутствовать; зато водобойная и сливная получают наибольшее развитие. Примерно можно считать следующие длины частей флютбета в зависимости от глубины воды Н₁ в верхнем бъефе над порогом сооружения:

задается в зависимости от ширины сооружения В, то-есть

$$L_1 = (1,5-2) B$$
 сопрягающие сооружения $L_1 = (2-3) H_1$


2. Водобой $\left\{\begin{array}{l}$ шлюзы-регуляторы $L_2=(3-5)\ H_1$ водосливные плотины $L_2=(3-5)$

высоты плотины

3. Рисберма
$$\left\{\begin{array}{ll}$$
 шлюзы-регуляторы $L_1 = (5-6) H_1 \\ \text{, промывные } L_3 = (6-8) H_1 \end{array}\right.$

§ 5. Предложение Д. Клибборна

Неудовлетворительность существовавших до 1900 г. приемов назначения размеров флютбетов (по образцу построенных сооружений) побудила Д. Клибборна поставить вопрос определения размеров сооружения в другую плоскость; именно, в назначении размеров он исходил из таких условий движения грунтовых вод под сооружением, при которых скорость течения воды была бы меньше вымывающей для данного грунта.

Им была проделана серия опытов с движением воды по длинной, наполненной песком; горизонтальной трубе (36,6 м); диаметром 0,6 м¹, вода подводилась с одного конца трубы с различными напорами (до 6,1 м), с другого конца выливалась через открытую (сверху) горизонтальную поверхность песка; вдоль трубы через 3 м были поставлены пьезометры для наблюдения над горизонтами воды (рис. 1).

Получив в большинстве случаев прямолинейное падение давлений по трубе, Д. Клибборн вывел следующие заключения (являющиеся прямым следствием закона Дарси):

а) при одном и том же песке, одинаково набитым в трубу, и при постоянной длине и

диаметре трубы расход воды пропорционален напору над входной частью трубы;
б) при постоянных напоре и диаметре трубы расход воды обратно пропорционален длине трубы (отметим, что п.п. а и б говорят в сущности об одном и том же—именно, о пропорциональности расхода уклону при равных прочих условиях);

в) при постоянстве остальных условий расход пропорционален площади трубы;

 г) при смеси песков различной крупности расход изменяется прямо пропорционально сумме свободных промежутков².

Результаты своих опытов Клибборн распространил и на сооружения; именно, движение воды под сооружением он уподобляет движению ее по трубе с диаметром, равным глубине водопроницаемого слоя грунта под сооружением, не

принимая во внимание влияния на поток шпунтов и зубьев флютбета.

Так как при таком уподоблении движение протекает совершенно одинаково по любого размера трубке, параллельной флютбету сооружения, то Клибборн для определения длины сооружения предложил производить каждый раз подобные опыты с движением воды в трубе, загружая ее грунтом основания сооружения. В виду того, что скорости движения пропорциональны напорам (при прочих равных условиях), то Клибборн, переходя к определению длины сооружения, в зависимости от заданных наперов, полагает за таковую принимать ту величину ее, при которой еще не будет наблюдаться вымыва частиц грунта (в опыте с трубой), увеличив ее (длину) в запас на 20°/о. Толщина флютбета должна определяться из условий уравновешивания его веса давлением воды на флютбет и должна быть увеличена против этих условий на 25°/о в запас.

Buckley. "Irrigation pocket book".

² Последний вывод не следовал из результатов опыта; он стоит в противоречии с существующими представлениями о движении груптовых вод (см. формулу Крюгера).

Клибборн сделал далее замечания о деталях конструкций гидротехнических сооружений и о работе их (не являющихся, впрочем, результатом его опытов) Так, он отметил обязательность устройства понура, понижающего давление воды на остальные части флютбета и уменьшающего вымывающее действие подземного потока; влияние зубьев флютбета он усматривал только в их отклоняющем действии на направление движения.

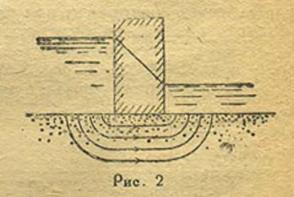
Идея Д. Клибборна для случая непараллельного слоя проницаемого грунта под сооружением была дополнена В. Б. Гордоном, предложившим и модель опыта—трубу делать сходящейся или расходящейся, смотря по условиям залегания грунта; падение напоров в такой трубе будет следовать по параболе (соглас-

но закона Дарси).

Каких-либо формул и других зависимостей для расчета сооружений Клиб-

борном не дано.

Предложение его, достаточно широко известное, тем не менее не получило распространения в практике отчасти от того, что применение его каждый раз сопряжено с постановкой опытов, а главное вследствие крайней схематизации самого явления движения и формы очертания флютбета, существенно искажающих весь процесс движения воды.


§ 6. Теория В. Бляя

1. Основное предположение и его следствия

Идеи Д. Клибборна получили законченное оформление в предложении инженера В. Бляя. Расчету флютбетов В. Бляй ставит два условия: первое— длина флютбета должна быть достаточно большой, чтобы скорости подземного потока под ним не достигали предельных (вымывающих) значений, и второе— толщина флютбета должна быть выбрана таких размеров, при которых вес флютбета должен превосходить давление со стороны

подземного потока (снизу).

Очевидно, для выполнения обоих указанных условий необходимо знать величины вымывающих скоростей для различных грунтов и распределение давлений подземного потока вдоль флютбета. Считая, что поток подземных вод распространяется по всей области водопроницаемого грунта под сооружением (рис. 2), Бляй ограничил рассмотрение движения грунтовых вод поверхностью стыка подошвы флютбета с грунтом, полагая, что наиболь-

шие скорости движения будут именно на этой поверхности. Далее для нахождения этих наибольших скоростей движения, а главное—для определения давлений на флютбет со стороны подземного потока, Бляй распространил закон Дарси для элементарной струйки подземного потока

$$V = K \frac{dH}{dL} = KI$$

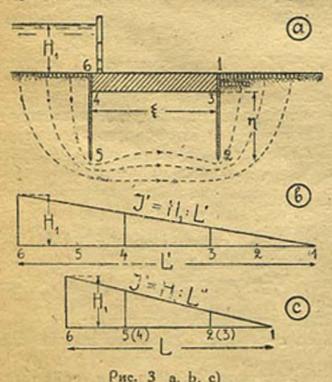
на эту поверхность стыка сооружения с грунтом, то есть предположил, что сопротивление движению воды вдоль этой поверхности везде одинаково (при постоянстве К — коэфициента фильтрации). Здесь V — скорость фильтрации, dH падение напора на длине dL; I — уклон потока.

Следствием такого предположения являются, очевидно, положения:

1. Изменение давлений вдоль флютбета со стороны подземного потока следует закону прямой линии.

2. При постоянстве длины распрямленного контура флютбета и действующего напора воды давление в любой точке развертки флютбета постоянно и не

зависит от формы флютбета.


Таким образом, сделанное предположение и следствия его дают возможность весьма просто определить давления на флютбет и скорости подземного потока вдоль флютбета при известных физических постоянных данного грунта.

Так, для плоского флютбета, при расположении дна верхнего и нижнего бъефов на одном уровне и при глубинах воды Н1 в верхнем бъефе и Н2 в нижнем бъефе, отыскание давлений на флютбет со стороны подземного потока сводится к следующему построению эпюры давлений: находится действующий напор подземного потока, равный $H = H_1 - H_2$; далее, так как этот напор равномерно погашается вдоль контура флютбета, то, измерив протяжение отдельных участков флютбета и найдя общую длину L его контура, откладывают ее по горизонтали; восстановив в начале ее перпендикуляр длиною, равной Н,, и в конце длиною Н, и соединяя верхние концы перпендикуляров прямой линией, получают искомую эпюру распределений давлений по флютбету. На рисунке 3 для плоского флютбета с двумя шпунтами выполнены описанные выше построения; действующий напор здесь, при Н2 = 0 (что будет при опущенных щитах сооружения), равен $H = H_1$; длина распрямленного контура L равна прямой $0-1 \dots 5-6$, в которой длина каждого шпунта отложена дважды: первый раз при обтекании его водой сверху, второй раз-при обтекании его кверху. Ординаты эпюры над точками З и 4, взятые в том же масштабе, что и Н, показывают давления подземного потока в этих точках. Откладывая эти ординаты над соответствующими точками флютбета и соединяя их прямыми, получим распределение давлений на флютбет; получающиеся уступы эпюры будут показывать части напора, погашаемого шпунтами. На рис. 8 показано подобное построение эпюры давления для бесшпунтового флютбета, снабженного низовым зубом.

Движение грунтовой воды по всей области проницаемого грунта под флютбетом Бляй оставляет без рассмотрения на основании предположений, что наибольшие скорости движения будут на поверхности стыка флютбета с грунтом и что распределение давлений подземного потока по флютбету (являющееся при-

чиной движения) не зависит от очертания (формы) флютбета.

Однако, в тех случаях, когда флютбеты сооружений снабжаются шпунтами, влиянием формы флютбета на движение грунтовых вод пренебрегать уже не представляется возможным; при близкой расстановке шпунтов активная струйка грунтовой воды уже не будет итти по контуру флютбета между шпунтами, а перебросится непосредственно между концами соседних шпунтов, то есть будет итти не по пути 5—4—3—2 (рис. 3-а), а непосредственно между 5—2 (на рис. 3-а пунктиром схематично показано направление движения струек).

Последнее обстоятельство стоит в противоречии с исходными допущениями Бляя и тем самым лишает возможности применения его приема расчета; кроме того, оно указывает на нерациональность близкой расстановки шпунтов, когда средняя часть флютбета (между шпунтами) не участвует в погашении действующего напора. Учитывая последнее обстоятельство, Бляй предложил наименьшее расстояние между шпунтами делать не меньшим двойной глубины шпунтов т, то есть чтобы € ≥ 2 т (рис. 3-а). При такой расстановке шпунтов можно считать, что активная струйка потока будет итти по контуру флютбета 6-5-4-3-2-1 и, следовательно, определение давлений на флютбет сведется к построению описанной выше эпюры давлений (рис. 3-b).

При меньшем расстоянии между шнунтами ξ < 2 η уже не будет равномерного по-

гашения напора по всему обводу шпунтов, и путь активной струйки не будет равен развертке флютбета 6-5-4-3-2-1, а будет короче, направляясь по линии 6-5-2-1, что ведет при той же величине H_1 к увеличению пьезометрического уклона потока (I'' > I' на рис. $3 \cdot c$), а следовательно, к увеличению скорости движения.

Бляй предложил назначать длину непроницаемой части флютбета таких размеров, чтобы под сооружением скорости подземного потока не достигали вымывающих значений, то есть, чтобы

$$V = KI < V_n = KI_n$$

где V_п и I_п— вымывающие скорости и уклон для данного грунта (то есть для заданного К-коэфициента фильтрации).

Однако, вероятно, вследствие недостаточной выясненности величин вымывающих скоростей, Бляй предложил принять за критерий не вымывающую скорость, а "вымывающий уклон", то есть $I_{\rm s} > I$. Так как уклон подземного потока под сооружением измеряется отношением действующего напора Н к длине развернутого контура флютбета L, то условия невымываемости грунта напишутся так

$$I = \frac{H}{L} < I_s = \frac{1}{C}$$
, или $L \ge HC = L_0$

Бляй, на основании произведенного им обследования сооружений, дает следующую таблицу допускаемых (безопасных) значений уклонов, или, точнее, обратных им величин С (так называемых коэфициентов Бляя).

33		Ta	блица 3
NºN9	Грунт	С	10/6
1	Илистый	18	5,5
2	Меакий песок	15	6,7
3	Грубо-зернистый песок	12	8,3
4	Λεσε	6-9	16,7-11,1
5	Гравелистый песок	5-9	, 20-11,1
6	Песок с галькой	4-6	25-16,7
	C. Carlotte		

Аля назначения длин отдельных частей флютбета Бляй дал следующие формулы¹:

понур {

рисберма + водобой (так называемая) длина крепления)

Обозначения:

Н1-глубина воды в верхнем бъефе;

На — высота горизонта воды в верхнем бъефе над флютбетом водобоя;

Н_в — высота гребня водослива плотины над наинизшим горизонтом воды нижнего бъефа;

 q — наибольший расход на 1 погонный метр отверстия в кубических метрах в секунду;

С-коэфициент Бляя.

Приведенные формулы составлены Бляем из соотношений для размеров отдельных частей флютбета Нарорской плотины, принятой им за образец. При-

W. G. Bligh. "The practical design of irrigation works". Формулы эти приведены у В. Д. Журина "Основы гидротехнического расчета"; выше они приведены в несколько упрощенной форме.

менение этих формул при проектировании создает повторение размеров флютбета Нарорской плотины, измененных пропорционально коэфициенту С и √ На (для водобоя), поэтому поскольку проектируемое сооружение по конструкции и условиям работ будет близко к Нарорской плотине, постольку применение этих формул может иметь место. Как показывает строительная практика, длина водобоя, определеная по приведенным формулам, несколько преувеличена, длина же рисбермы преуменьшена; правильнее было бы назначать длину водобоя, исходя из условий протекания надземного потока через сооружение (с погашением его энергии), удовлетворяя при этом безопасным условиям движения подземного потока выбором соответствующей длины контура флютбета L≫L₀ = CH.

Не останавливаясь на гидравлической стороне вопроса, как не входящей в поставленную тему, в следующих приведенных ниже примерах для назначения длины водобоя будем исходить из формул Бляя, причем в виду того, что не всегда в проектируемых сооружениях имеются и водосливные и промывные отверстия, в формулу длины водобоя вместо величины H_a будем подставлять величину H_b

как это принято в практике.

От применения формулы длины крепления, вследствие ее ненадежности, воздерживаемся.

3. Толщина флютбета

Рассматривая флютбет сооружения работающим независимо от его частей (быки, стены и пр.), толщину его назначают такого размера, чтобы вес флютбета

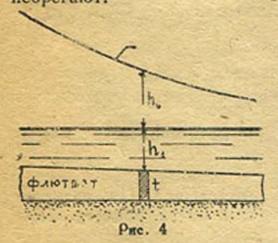
был достаточен для противодействия выпирающему давлению воды.

Отсюда не следует понимать, что назначение такой толщины флютбета вызывается опасением "всплывания" кладки флютбета; избыток давления воды снизу над весом флютбета не вызовет, конечно, его всплывания, но возможно явится причиной появления в флютбете трещин, которые, укорачивая путь фильтрующейся воде, тем самым вызывают больший уклон потока, а, следовательно, и большие скорости, могущие превзойти безопасные для грунта пределы.

Такая постановка вопроса отыскания толщины флютбета, очевидно, предпо-

лагает наличие следующих условий:

1. Запас в толщине кладки должен быть по всей длине флютбета одинаков, иначе, кроме веса, выпиранию будут противодействовать развивающиеся в флютбете силы упругости.


Материалу кладки массивного флютбета свойственно хорошо сопротивляться лишь сжимающим усилиям; скалывающим и растягивающим напряжениям он ока-

зывает очень слабое сопротивление.

2. По предыдущим соображениям давление подземного потока на флютбет по каждой линии, перпендикулярной к продольной оси его, должно быть постояню, то-есть расчет ведется в условиях плоской задачи.

3. Силами трения в швах флютбета, сопротивляющихся выпиранию его, пре-

небрегают.

При допущении таких условий толщина флют-

бета найдется из следующих соотношений.

Случай затопленного флютбета: на выделенный из кладки флютбета вертикальный столбик, у которого площадь основания равна единице, действуют силы: сверху—давление воды надземного потока h, и вес столбика ôt, где ô—удельный вес кладки; снизу—давление подземного потока, равное t+h,+h, (на рис. 4 и 5 линии, помеченные стрелкой, указывают распределение пьезометрических давлений на флютбет со стороны подземного потока). Для равновесия должны иметь

$$\delta t + h_1 = t + h_1 + h_0 \text{ или } t = \frac{h_0}{\delta - 1}$$

Если флютбет не затоплен (рис. 5), то уравнение равновесия напишется таким образом

$$\delta t = t + h_0$$
 или $t = \frac{h_0}{\delta - 1}$

Вводя коэфициент запаса п для толщины фіютбета, получаем выражение

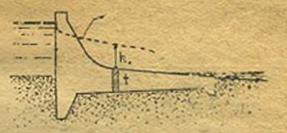
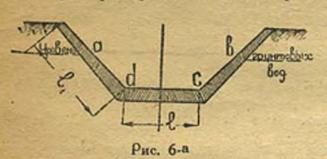



Рис. 5

$$t=n\;\frac{h_0}{\delta-1}\quad \ldots \qquad (10),$$

где h₀—расчетное давление, равное в случае затопленного флютбета разности давлений подземного и надземного потоков; в случае незатопленного флютбета—давлению со стороны подземного потока, измеряемого от верха флютбета.

При проверке толщины флютбета, составляющего одно целое с продоль-

ными стенами шлюза (рис. 6-а слева), или хотя бы и отделенными от них швом (рис. 6-а справа), но так, что выпирающему усилию сопротивляется не только флютбет, но и продольная стенка (или облицовка),—следует вместо предыдущей формулы ввести поверку на выпирание не одного только флютбета, но и стен шлюза. Для этого следует подсчитать вес погонного метра (по длине шлюза) флют-

бета и стен, выпирающее давление фильтрационной воды на длине погонного метра, которое должно быть меньше веса погонного метра шлюза. Таким образом, предыдущая формула заменится следующей

где w - площадь abcd;

t₁ и t — средние толщины стен и флютбета;

 l_1 и l — длины стен и ширина флютбета.

При широких шлюзах (большое *l*) развивающиеся в флютбете напряжения от давления воды могут потребовать устройства шва; в таком случае расчет толщины должен вестись по формуле (10).

Желево-бетонные флютбеты, жестко соединенные со стенами, поверяются по формуле (11) и рассчитываются как сооружения на упругом основании.

В деревянных флютбетах, устраиваемых на глинобетоне, рассчитывают глинобетонное заполнение, так же как массивный флютбет, если оно не получается чрезмерной толщины.

При очень толстом слое глинобетона, получающемся по расчету, следует для его уменьшения принять во внимание работу на выпирание свай основания

$$Q + \omega t(\hat{c} - 1) = nW (12),$$

где Q — сопротивление свай на выпирание от трения;

— площадь флютбета, приходящаяся на одну сваю;

W-давление фильтрационного потока на площади Ф.

Силу Q можно принимать по проф. В. К. Дмоховскому 1

$$Q = \frac{\gamma l^2 p P f}{2m}$$
 в тоннах

Здесь 7 — объемный вес грунта в тоннах на 1 м3;

1 — длина сваи в грунте в метрах;

р - периметр ее поперечного сечения в метрах;

¹ Проф. Д. А. Серк. "Основания и фундаменты гражданских сооружений".

$$P = tg^{2} \left(45 + \frac{\varsigma}{2} \right)$$

 угол естественного откоса грунта; т- коэфициент запаса, равный 4-8 (больший для слабых грунтов); f — коэфициент трения, равный 0,3-0,5.

Иногда, кроме силы сопротивления сваи на выпирание от трения, еще учитывают и силу сопротивления Q1 ее от сцепления сваи с грунтом

$$Q_1 = \frac{4C}{P}$$
. Q в тоннах,

где коэфициент С изменяется для:

мелкого песка от 0 до 0,1 тонны на 1 м2 крупного " " 0 " 0,2 глины " " 0 " 1,2 растительной земли от 0 до 0,5 тонны на 1 м2

Для насыщенного водой грунта С близко к нулю.

§ 7. Уточненные расчетные коэфициенты

1. Коэфициенты уклона

Коэфициенты уклона С, данные инженером Бляй (и дополненные впоследствии для других грунтов), приведены были выше в таблице; для крупных сооружений они и сейчас имеют применение; однако, примеры отдельных сооружений, удовлетворительно работающих при меньших С1, результаты полевых исследований г и опытных работ Среднеазиатского опытно-исследовательского института водного хозяйства и, наконец, теоретические предпосылки о величинах вымывающих скоростей, говорят за то, что данные о коэфициентах С, приведенные выше, преувеличены. Те величины коэфициентов С, которые получаются в результате указанных выше работ, не могут быть перенесенными в практику без добавления к ним коэфициентов запаса, учитывающих фактическую неоднородность состава грунтов, неоднородность их залегания и относительную точность выполнения условий плоской задачи в натуре и неодинаковость общих условий работы сооружения.

Проф. В. Ф. Булаевский для назначения величины коэфициента запаса в ирригационных сооружениях разбивает их на три класса 4.

В зависимости от назначения гидротехнических сооружений и от важности их работы для действия данной системы, гидротехнические сооружения, с точки зрения их прочности против фильтрации, могут быть разделены на три класса.

- 1-й класс: а) все сооружения, возводимые на реках и потоках с максимальными расходами не менее 100 м3 сек;
 - б) головные сооружения, перепады, сбросы, акведуки, вододелители, крупные сооружения и регуляторы 1-го порядка из магистральных каналов, имеющих форсированный расход более 30 м³ сек;
- 2-й класс: а) все сооружения, возводимые на реках и потоках с максимальными расходами менее 100 м³/сек;

² См. отчеты инж. Архангельского Г. И., инж. Силантьева М. Ф. и других

о гидрогеологических работах, помещенные в журнале "Вестник ирригации".

3 Е. Замарин. "Движение грунтовых вод под гидротехническими сооружениями" и статью

в № 1 ва 1931 г. "Социалистическое водопользование".

4 Проф. В. Ф. Булаевский. "Расчетные нормы и коэфициенты для проектирования врригационных сооружений". (Рукопись)

¹ См. "Материалы по обследованию сооружений Голодностепской ирригационной системы" проф. В. Ф. Булаевского; примеры сооружений в "Основах гидротехнического расчета" проф. В. Д. Журина.

- б) головные сооружения, перепады, сбросы, акведуки, вододелители и регуляторы 1-го порядка на каналах с форсированным расходом от 30 до 35 м³/сек;
- 3-й класс: а) все гидротехнические сооружения на каналах с форсированным расходом менее 5 м³/сек.

В зависимости от того, к какому классу относится сооружение, предъявляют к нему требования большего обеспечения прочности при расчете на вымывание грунта при фильтрации".

Таким образом, в основу разбивки сооружений на классы принято наличие реки, на берегах которой располагаются сооружения, пропускаемый ею расход воды, местоположение сооружения (на реке или на канале) и пропускаемый им расход. Более тяжелым условиям работы сооружения или большему масштабу его соответствует и больший запас в величине коэфициента С, согласно следующего соотношения:

Классы сооружений — I; II; III; Соотношение коэфициента С—2; 1,5; 1.

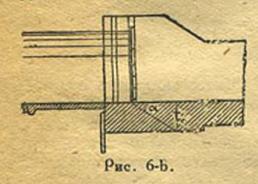
Такое соотношение в величинах коэфициента С, учитывающее, в сущности, и другие условия работы сооружения (например, для берегового сооружения учитывающее и опасность подмыва его рекой), а не только изменение в условиях подземного потока (чем больше сооружение, тем больше вероятия в неоднородности состава и структуры грунтов основания), может быть принято для практики:

За основу назначения коэфициентов С примем их значения для первого класса равными 75% от приведенных выше в таблице.

		1	11	111	
	Классы сооружений		ш	111	
New New	Расходы воды в них в м' в секунду	Боль-	30—10	10-5	Примечание
	Грунты:	Коэф	ициент	С	
1	Илистые	12	9	6	
2	Меакопесчаные	10	7 5	5	
3	Средне- и крупио-песчаные	9	7	4,5	
4	Лесс легкий	8	6	4	Содержание части
					d = 0 - 0.01 mm He больше $60%$
5	Лесс тяжелый	7	5	3,5	до 80% частиц $d = 0-0.01$ мм
6	Глинистые	6	4,5	3	
7	Гравелистые	7	5	4	
8	Галечниковые	6	5	3,5	

В американской практике, по данным инж. Т. А. Колпаковой, принимаются следующие величины С:

для	крупных	сооружений	•				•	8-10
n	средних	,				9		6-7
	мелких				13			4


Коэфициенту запаса п в формуле (10) толщины флютбета не дают значений больших единицы; более того, его принимают чаще меньшим единицы вследствие того, что теорией инженера Бляя, как и другими, не принимается во внимание ряд факторов, идущих в запас прочности флютбета, как то: увеличение веса мас-

сивного флютбета от намокания, неточного (в сторону увеличения) определения действующего давления фильтрационного потока, трения в швах и прочее.

Учитывая сказанное, можно придавать следующие значения коэфициентам:

Классы сооружений 0,9 - 0,850.80 - 0.75Коэфициенты п 1

В рассмотренном выше расчете флютбетов, в условиях напорного движения грунтовых вод, предполагалось, что уровень их совпадает с дном нижнего канада. В случае выклинивания грунговых вод выше дна нижнего канала на величину ha погашаемым напором, будет разность между уровнем воды перед сооружением и уровнем выклинивания грунтовых вод. Расчетное для толщины флютбета давление будет равно h + h, при опорожненном нижнем канале. Давление h находится по предыдущему для плоскости сравнения, проходящей через уровень выклинивания грунтовых вод.

При определении толщины флютбета в начале водобоя не следует опускать без учета разгружающего давления воды перед щитами, распространяющегося в кладке под углом $\alpha = 35^{\circ} - 40^{\circ}$.

Так как давление поверхностной воды направлено обратно выпирающему давлению от фильтрационной воды, то, следовательно, расчетной точкой с наибольшей толщиной флютбета будет А (рис. 6-b).

Наименьшее расстояние между шпунтами

Предполагая сопротивление движению потока грунтовых вод вдоль флютбета постоянным и независящим от формы последнего, В. Бляй все же ставит следующее условие для расстановки шпунтов: шпунты 71 и 7 должны быть расставлены на таком расстоянии между ними Е, чтобы Е было не меньшим 1, + 1. Формально последнее условие находится в противоречии с указанным выше предположением и в сущности неявно учитывает факт распространения грунтового потока по области проницаемого грунта (а не только по так называемой ной линии флютбета).

В самом деле, ставя условие расстановки шпунтов, Бляй указывал, что при $\xi < \eta_1 + \eta_2$ погашение напора (характеризуемого уклоном потока) вдоль участка флютбета, расположенного между шпунтами η_1 и η_2 , будет меньше расчет-

ного, принимаемого равным I₀ = 1: С₀, где С₀ — коэфициент Бляя.

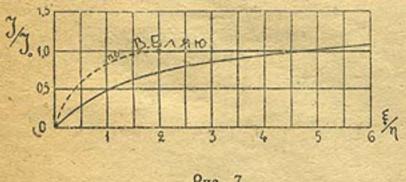


Рис. 7

Таким образом, схема работы участка флютбета , расположенного между шпунтами, может быть представлена диаграммой (рис. 7), где на оси абсцисс отложены отношения длин горизонтальных участков флютбета в к средней глубине шпунтов т, ограничивающих участки, а на оси ординат отношение действительного уклона I к расчетному уклону Io на тех же горизонтальных участках

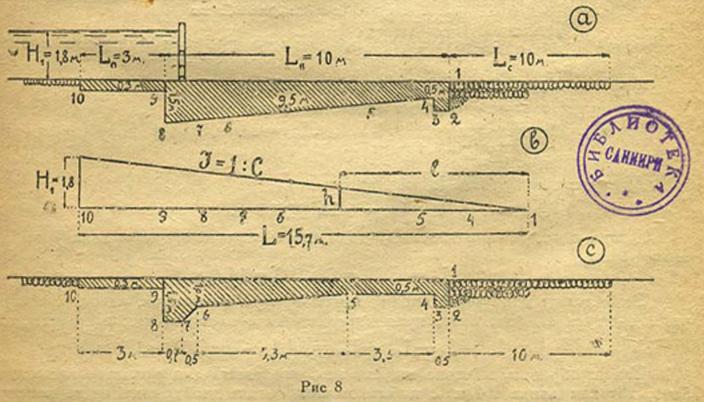
флютбета. Зависимость $\frac{1}{10} = f(\frac{1}{20})$ должна по Бляю для $\frac{1}{20} \ge 2$ следовать по закону прямой, параллельной оси абсцисс; для точек — < 2 рассматриваемая зависимость должна характеризоваться некоторой кривой, касательной в точке $\frac{1}{\eta} = 2\kappa$ полученной ранее прямой и приближающейся к оси ординат в точке -

В действительности взаимодействие горизонтальных участков флютбета и шпунтов сложнее, чем приведенная схема; оно индивидуально для каждого вида очертания флютбета и области проницаемого грунта.

Так, например, для двух флютбетов с тремя шпунтами зависимость $\frac{1}{I_0} = f\left(\frac{\xi}{\eta}\right)$ по исследовательским материалам проф. А. И. Фидмана (труды МИИТ № 6) может быть схематично представлена нижней кривой на рис. 7.

Не обобщая приведенной зависимости (за недостаточностью данных), все же можно отметить, что критерий $\operatorname{Б}_{\Lambda}$ я я $\xi \geq 2\eta$ недостаточен (примерно, ξ должно быть около 2,5 η) и что при больших $\frac{\xi}{\eta}$ (∞ 5 — 6) влияние горизонтальных участков на погашение напора оказывается даже больше расчетного.

§ 9. Примеры гидротехнического расчета флютбетов


1. Метод расчета

Для гидротехнического расчета должны быть заданы колебания горизонтов воды перед и за сооружением, пропускаемые им при этом расходы, тип сооруже-

и я, материалы кладки, фильтрационные качества грунта (коэфициент С).

На основании этих данных определяется наибольший действующий напор H, по величине которого и по заданному коэфициенту C намечается необходимая длина развернутого контура флютбета $L_0 = \mathrm{CH}$. Далее, по эмпирическим формулам назначается длина понура L_n и длина водобоя L_n .

Зная длину водобоя, намечают его толщину—в конце конструктивно наименьшую, в начале—приблизительную, исходя из следующих соображений: эпюра давлений для плоских флютбетов будет представлять собой прямоугольный треугольник (рис. 8-в); расчетное давление h в какой либо точке флютбета, от-

стоящей от конца его на расстоянии l (считая по развертке флютбета), будет равно h=l l=l : C.

Так как

$$t = \frac{h}{\delta - 1} = \frac{l}{C(\delta - 1)}$$

то для начала водобоя толщина его будет равна $t' = \frac{L_s}{C(\delta-1)}$

Имея приблизительные толщины по концам водобоя и выбирая толщину понура из конструктивных соображений, вычерчивают схему флютбета (рис. 8-а), снабжая его низовым зубом (от 0,75 и до 1,5 м) в целях предупреждения вымыва грунта 1 . По так составленной схеме флютбета находят длину его контура L и поразности $L_0 - L$ находят величину обвода части контура L_s , приходящуюся на шпунты или зубья.

Введя в очертание флютбета шпунт (или зуб) глубиною $L_r = L_s$: 2, строят для полученной схемы флютбета эпюру давлений (рис. 8-b), по которой уточняют толщину флютбета; для этого, занумеровав угловые точки флютбета, находят расстояние до них от конца флютбета (от точки № 1). Зная расстояние от первой до последней точек (то есть длину контура), находят действительный коэфициент C = H: L, по нему определяют давления в точках флютбета $h = l \ I = l: C$ и по

давлениям h находят толщину $t = \frac{h}{\delta - 1}$.

Так как давления в зависимости от расстояний l изменяются линейно, то и толщина флютбета будет линейно зависеть от l; поэтому нет надобности находить (или поверять) толщины флютбета во многих точках; например, для рис. 8 достаточно найти толщину в точке 6-й и соединить прямой точки 6 и 4, где толщина взята конструктивно наименьшей. Так как при таком назначении толщины флютбета в 4-й точке получается большой запас в толщине, то в целях уменьшения объема кладки можно отыскать на флютбете ту точку его (№ 5), в которой наименьшая конструктивная толщина t_* будет равна расчетной; для этого по предыдущим формулам находят по t_* соответствующую ей длину

$$h = l: C = t_{\kappa}$$
 (6—1), или $l = C t_{\kappa}$ (6—1)

Подробности расчетов приведены в следующих ниже примерах (имеющих только показательный характер).

2. Примеры расчетов флютбетов

Пример 1-й. Составить эскиз продольного профиля флютбета промывного шлюза.

Данные: $H_1 = 1,8$ м; $C \ge 8$; материал—бетон.

Намечаем следующие размеры частей флютбета:

длину понура берем около $1^1/_2$ H_1 . . . L_n =3,0 м, длину водобоя находим по формуле L_n = C $\sqrt{H_1} = 8\sqrt{1.8 \cong 10}$ м.

Длину сливной части L_е принимаем

$$L_c=6~H_1\cong 10~m.$$

Длина контура флютбета L₀ (так называемая контурная линия) не должна быть менее

$$L_0 = CH_1 = 8 \times 1.8 = 14.4 \text{ M}.$$

Зная длину контурной линии, длины понура и водобоя, находим протяжение части контура L, флютбета, приходящуюся на его утолщения и шпунты, то есть

$$L_{5} = L_{0} - L_{n} - L_{B} = 14.4 - 3.0 - 10.0 = 1.4 \text{ m}.$$

Таким образом, наличие шпунта не обязательно для рассматриваемого флютбета, так как длина 1,4 м с избытком покроется необходимыми по конструкции водобоя изломами контура флютбета. В виду наличия больших донных скоростей в верховой стороне (при неполном открытии щитов) и возможных ударов щитов о флютбет—делаем в начале водобоя небольшой зуб; существование так называемых фокусов размыва заставляет также и в низовой стороне делать небольшой зуб.

¹ См. о фокусах размыва в "Теории движения грунтовых вод" профессора Н. Н. Павловекого.

Таким образом, в первом приближении можно наметить следу ощие размеры флютбет.: толщина понура 0,3 м; тол цина водобоя в начале 1,5 м, в конце 0,5 м; концевой зуб глубиною 1,0 м, толщиною 0,5 м (рис. 8-а).

Развертывая контур флютбета в прямую, строим на ней эпюру пьезометрических давлений (рис. 8-b), отмечая на ней давления, соответствующие точкам излома контура флютбета 1,2 . . . 9,10, причем для единообразия нумерации угловых точек на эскизе флютбета (рис. 8-а) отмечены точки 5, 6, 7—места будущих углов флютбета. Пользуясь эпюрой и эскизом флютбета, составляем таблицу длин отдельных участков флютбета и необходимых толщин его в отдельных точках, для этого находим уклон пьезометрической прямой

$$I = H_1: L = 1,8:15,7 = 1:8,7 = 1:C,$$

где L — расстояние между крайними точками флютбета на эпюре, то-есть 1-й и 10-й (расстоянием от 10-й точки до дна верхнего бъефа пренебрегаем).

Давление h в какой-либо точке, отстоящей от 1 й на расстоянии l, очевидно, равно

h = l I = l : C.

Толщина кладки в той же точке равна

$$t=rac{h}{\delta-1}=rac{h}{2,2-1}=0,833\ h$$
 или $t=rac{h}{1,2}=rac{l}{1,2}=rac{l}{1,2 imes8,7}=0,095\ l$ и обратно $l=10,5\ t.$

Определение толщин t сведено в следующую таблицу:

Таблица 5

	Carlo Balling		
№№ точек	расстояние	t расчетная	
4	2,0	0,19	
5	5,2	0:5	Для 5-й точки расстояние 5,2 м получили, за-
6	∞10	0,95	даваясь толщиной в 0,5 м. Пользуясь таблицей, уточ-
7			няем контур флютбета, задаваясь следующими его
	11,5	1,10	размерами (см. рис. 8-с).
9	12,7		
10	15,7		

Таблица 6

NºNº	1	t расчетная	t принятая	
				l = 1,8:15,9 = 1:8,8; l = 10,6
5	5,0	0,47	0,50	С = 8,8 больше заданного =
6	10,3	0,97	1,00	С — 0,0 облише заданного —
7	11,0	1,04	1,50	
10	15,9		0.30	

Пример 2-й. В условиях предыдущей задачи составить эскиз флютбета тоащиною не более 0,85 м с постановкой одного шпунта. Найдем пьезометрический уклон и по нему длину шпунта; для этого используем уравнение

$$t = \frac{lI}{1,2}$$

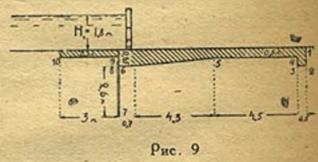
для 6-й точки (рис. 9), для которой $l \cong 11,5$ м и $t \leqslant 0,85$ м.

$$I = 1,2\frac{t}{l} = 1,2\frac{0,85}{11,5} = 0,089$$

Длина контурной линии $L_0 = H_1: I$,

то-есть

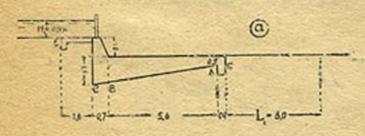
$$L_0 = \frac{1,8}{0,089} = 20,3 \text{ m}.$$


Зная длину контуров понура и водобоя, находим по разности длину шпунта, то есть $L_s=20,3-3,0-11,5=5,8$ м.

В полученную длину 5,8 м входит участок между точками 8 и 9, то есть 0.85-0.30=0.55 м; вычитая его из 5,8 м и разделяя разность на 2, получаем глубину шпунта равной

$$L = \frac{5.8 - 0.55}{2} \sim 2.6 \text{ m}.$$

Следовательно, эскиз флютбета будет иметь следующую форму (рис. 9).


	The same of the sa		Таблица 7
N6N6	1	t расчетная	t принятая
4	2 -	0,15	0,5
5	6,7	0,5	0,5
6	11,5	0,85	0,85
8	16,7	-	_
9	17,2	_ :	0,30
10	20,2		0.30

Поверяем принятые размеры (см. табл.) I = 1.8:20.2 = 1:11.2

l = 13,5 t; l_5 найдено по принятой $t_5 = 0,5$ м.

Пример 3-й. Составить эскиз кирпичного перепада без водобойной подушки

 $H_1 = 0.9 \text{ m}, \ P = 1.0 \text{ m}, \ C \gg 7.$

1-й вариант-флютбет без шпунта.

Принимаем длину понура

$$L_n = 2H_1 \sim 2 M$$

длину водобоя

$$L_a = 2 (P + H_1) \cong 4 \text{ m.}^1$$

Длина контурной линии $L_0 = CH$, где H—наибольший действующий напор

$$H = 0.9 + 1.0 = 1.9 \text{ m}.$$

 $L_3 = 7 \times (0.9 + 1.0) = 13.3 \text{ m},$

Рис. 10 (a, b)

¹ Находится из гидравлического расчета колодца.

Длина зубьев и изломов флютбета должна быть равной $L_s = L_0 - L_n - L_n - P = 13,3 - 2 - 4,0 - 1 = 6,3 м.$

Так как длина зубьев получилась большой, то в гидравлическом отношении выгоднее несколько удлинить водобой, сократив длину зубьев; ориентировочно примем длину водобоя в 6,0 м; тогда L_s = 4,3 м.

Составляем предварительный эскиз флютбета по принятым длинам его ча-

стей (рис. 10-а).

Наметим необходимую толщину флютбета в точке В (см. табл. 8).

A 1,9 0,39
$$l=1,9:11,6=1:6,1=1:C$$

C 8,3 $l=1,60$
E 11,6 0,35

Haметим необходимую толщину флютбета в точке В (см. табл. 8).

 $l=\frac{h}{\delta-1}=\frac{h}{1,8-1}=1:C$
 $l=\frac{h}{l}=\frac{t.6,l}{1,25}=4,9 t.$

Уклон получился круче допускаемого $\frac{1}{6,1} > \frac{1}{7,0}$ вследствие того, что контур

флютбета был очерчен прямыми без учета ступенчатых переходов кирпичной

кладки от одной толщины к другой.

Учитывая ступенчатость флютбета и задаваясь его толщиной, начиная с 0,50 м, через 0,25 м, будем находить длины соответствующих его участков при пьезометрическом уклоне $I={}^1/{}_7$. Предварительный подсчет показал, что в точке В (конец откоса стенки падения) толщина равна $\sim 1,60$ м, но так как этот размер несколько преувеличен вследствие большего уклона, то поставим требование не превосходить толщины флютбета свыше 1,5 метра.

Итак, имеем

$$t = 1,25 h; h = l l;$$

			Таблица 9	1.05
NeNt	t	расчетное	<i>l</i> принятое	$t = 1,25 lI = \frac{1,25}{7} l$, или $l = 5,6 t$.
3 4 5 6 7 8 9	0,5 0,75 1,00 1,25 1,50 - 0,35 0,70	2,8 4,2 5,6 7,0 8,4	2,8 4.2 5,6 7,0 7,25	Для определения расстояний между точками 6—7—8 имеем полную длину контурной линии $L_0 = 13,3$ м; расстояния между 1—6 точками 7,0 м; между 8—10 точками 3,3 $+$ 1,5 $=$ 4,8 м.

Следовательно, расстояние 8-6 равно 13,3-4,8-7,0=1,5 м, а так как расстояние 6-7 равно 0,25, то 7-8 будет 1,25 м $\sim 1,2$ м.

В результате подсчетов получаем длины (рис. 10-b): понура $L_n = 2.0$ м, водобоя $L_B = 5.3$ м.

Пример 4-й. 2-й вариант. Для условий предыдущего примера и тех же длин частей флютбета определить длину шпунта при наибольшей толщине флютбета, не превосходящей 1 м. Наибольшая толщина флютбета будет в точке 5 (рис. 11).

Pac. 11

¹ Что соответствует формуле Вильсона L_в = 6H₁.

До этой точки расстояние от точки 1 равно

$$l_s = 5.3 + 0.25 + 0.25 + 0.5 + 1.0 = 7.3 \text{ m}.$$

Так как $t_5 \le 1,00$ м, то из последнего условия находим пьезометрический уклон, по нему всю длину контурной линии, а по ней, зная длины участков 10-8 и 6-1, определяем длину шпунта 6-7-8.

Итак, имеем

SHAH

$$t = 1,25 \text{ h, h} = lI, t = 1,25 ll,$$

 $t_5 = 1 = 1,25.7,3.1 = 9,13 I,$

$$I = \frac{1}{9,13}, C = 9,13$$

Длина контурной линии Lo будет равна

$$L_0 = 9,13.1,9 = 17,4 \text{ m}.$$

Длина шпунта будет равна (см. рис. 11)

$$L_s = 17.4 - 4.3 - 7.3 - 0.7 = 5.1 \text{ m}.$$

Глубину шпунта принимаем $L_0 = 2,6$ м.

Делаем поверку принятых размеров (см. таблицу).

В последних двух примерах мы принимаем толщину стенки падения по низу в 0,7 м без проверки; размер этот надлежит проверить по формулам для под-

Таблица 10

Nº No	t	/ расчетное	<i>l</i> принятое	Having 5 & Communication for
3	0,5	-3,65	3,6	Пример 5-й. Составить эскиз бесшпунтового флютбета шлюза регулятора.
4	0,75	5,47	5,4	Данные: $H_1 = 2,0$ м, $C \gg 9$,
5	1,00	7.30	7,3	$H_2 = 1,35 \text{ m}, P = +0,5 \text{ m}.$
10	0,70	17,50	17,5	Материал — бут, $\delta = 2,3$.

Рассчитываем на более тяжелый случай работы флютбета, когда щиты шлюза опущены и действующий напор равен $H = H_1 - P$.

По предыдущему принимаем длины:

водобоя —
$$L_n = 0.6 \text{ C V H} = 0.6.9. \text{ V} 2.0 - 0.5 \sim 7.0 \text{ м,}$$

рисбермы — L_c = 5 H ~ 8 м (следует поверить по углу растекания струи),

контурной линии — $L_1 = 9.(2.0 - 0.5) = 13.5$ м.

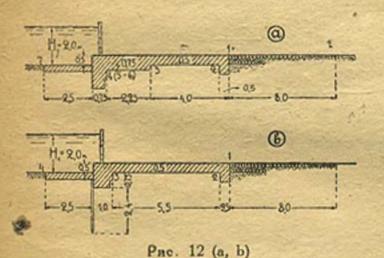
Длина обвода зубьев получается равной

$$L_{s} = L_{o} - L_{n} - L_{n} = 4,0$$
 M.

Зададимся следующими размерами: толщина флютбета в конце водобоя — 0,5 м; далее толщина увеличивается уступами по 0,25 м; глубина низового зуба 1,00 м, толщина его 0,5 м; глубина верхового зуба 1,00 м от дна канала; таким образом, предполагаем в флютбете 4 уступа по 0,25 м.

При таких условиях длина контурной линии будет:

$$L = 2.5 + 7.0 + 1.0 + 4.0,25 + 0.50 + 1.0 = 13 \text{ m}.$$


Получившаяся длина контура меньше требуемой на 0,5 м; необходимое увеличение ее получим удлинением верхового вуба на 0,25 см, то есть делаем его глубиною не 1,0 м, как предполагали ранее, а 1,25 м.

Для отыскания толщины t имеем

$$t = \frac{h}{\delta - 1} = \frac{h}{2,3 - 1} = 0,77 h = 0,77 l I = 0,086 l$$
, или $l = 11,7 t$.

По принятой толщине t отдельных участков флютбета найдем, по последней формуле, их длины, сведя подсчеты в следующую таблицу 11.

		Таблица	
Nº Nº	t	расчетное	/ принятое
2	0,5		2,0
3	0,5,	5,8	5,5
4	0,75	8,8	8,00
5	1,00	11,7	
6	1,00	14,6	-
7		-	13,5
The Party of the P			

Из подсчета получается, что нет необходимости делать толщину флютбета большей 0,75 м, то есть точки 4—5—6 следует совместить в одну, сосредоточив соответствующие им уступы в верхнем зубе (см. рис. 12-а).

Пример 6-й. Для условий предыдущего примера составить эскиз одношпунтового флютбета толщиною неболее 0,50 м.

Под щитами из конструктивных соображений (в целях удобства расположения опорных рам щитов и лучшегопримыкания шпунта к флютбету) делаем флютбет утолщенным на 0,75 м надлине 1,0 м; низовой зуб оставляем прежних размеров. Тогда длина контурной линии за вычетом длины обвода шпунта-

$$L-L_s = 2,5+7,0+2\times0,75+0,5+1,0=12,5 \text{ m}.$$

Глубина шпунта определяется из следующих соображений; в точке 3 толщина задана $t_3 = 0.5$ м, но так как $t_3 = 0.77$ $h_3 =$ = 0.77, l_3 I, то при известной $l_3 = 7 - 1 +$ + 0.5 + 1.0 = 7.5 м находим пьезометрический уклон I и по нему коэфициент С.

$$C = 1: I = 0,77.7,5:0,5 = 11,5.$$

Длина контурной линии должна быть равной

$$L_0 = CH = 11,5.1,5 = 17,3 \text{ M}.$$

Следовательно, на долю шпунта приходится

$$L_s = L_0 - L = 17,3 - 12,5 = 4,8 \text{ m}.$$

Глубина шпунта будет (рис. 12-b) равна

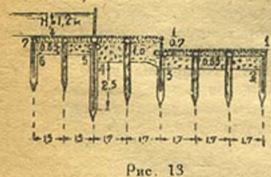
$$L_r = 4.8:2 = 2.4 \text{ M}.$$

Пример 7-й. Составить эскиз флютбета деревянного водосливного шлюза

Здесь массивную водонепроницаемую часть флютбета будет представлять глинобетонное заполнение под деревянным полом флютбета. При определении толщины такого заполнения необходимо учесть вес не только массива самого заполнения, но и вес располагаемого на нем слоя обратного фильтра толщиною ∞ 20—30 см, устраиваемого из соображений предохранения глинобетона от размыва его струйками воды поверхностного потока, проникающими через случайные трещины

деревянного пола шлюза, и от вымыва подземным потоком частиц глинобетона при появлении в нем трещин1.

Данные: $H_1 = 1,2$ м, P = 0,7 м, C = 10.


Принимаем длину понура La = 3 м; длина водобоя должна быть не меньше $L_a = 0.6 \text{ C} \text{ VH} = 6 \text{ V} 1.2 + 0.7 = 8.3 \text{ M}, принимаем } L_a = 8.5 \text{ M}.$

Расстояние от низового конца водобоя до стенки падения должно быть не меньшим l'=2 (P + H₁) = 3,8 м (считая как для перепада без водобойной подушки); разделяя длину водобоя на 5 частей (при 6 рядах свай), принимаем l'=5,1 м. Длина контурной линии $L_0=CH=10.1,9=19$ м. Будем считать наименьшую толщину глинобетонного заполнения в 0,65 м и толщину обратного фильтра над ним 0.25 м, то-есть $t_{\text{ман}} = 0.65 + 0.25 = 0.9$ м.

Зная La, La, tып и Р, подсчитываем уже имеющуюся длину частей флютбета, вычитая которую из Lo, получим в разности примерную длину обвода шпунтов L

$$L_s = L_0 - L - L_s - 2 t_{MHH} - P = 19 - 3 - 8, 5 - 1,8 - 0,7 = 5 M.$$

Здесь 2 тып = длине обвода по контуру флютбета водобоя и в начале понура, Р - обвод по вертикали на стыке водобойной и понурной части (приблизительно).

Наметим примерную толщину в начале водобоя, до которого длина контурной линии будет $l = L_x + t_{MHH} = 9,4 \text{ M}.$

Давление снизу здесь равно
$$h = I l = \frac{9,4}{10} = 0,94 м.$$

$$t = \frac{h}{\delta - 1} = \frac{h}{1.8 - 1} = 1,25 h = 1,17 m.$$

По произведенной наметке составляем следующий эскиз флютбета (рис. 13) и проверяем принятые размеры (см. табл. 12).

Таблица 12

N/N	1	t расчетная	принятая
2	0,9		
3	6.0	0,75	0,90
4	9,8	1,22	1,25
5	15,1		
6	18,1		
7	19.0		

В поверочной таблице не принято во имание влияние трех неглубоких роительных шпунтов, забиваемых для олучения формы глинобетонного заоднения, и возвышение верхней части добоя над плоскостью сравнения (продящей через точку 1), что идет в зас прочности.

Пример 8-й. Составить эскиз флютбета перегораживающего сооружения при следующих данных: $H_1 = 1.85$ м, $H_2 = 1.25$ м, C = 9, водобой обратным уклоном сопрягается с дном верхнего бъефа, расположенного выше первого на 0,45 м; материал-бетон.

Принимаем
$$L_u=2.5$$
 м.
$$L_n=0.6.9. \ \sqrt{1.85-0.45}=6.4 \ \text{м} \ 6.5 \ \text{м}.$$

$$L_0=9.(1.85-0.45)=12.6 \ \text{м}.$$

$$L_s=6 \ \text{м}.$$

¹ Отчасти как защита от промерзания и выпучивания глинобетона.

Полагаем, что вследствие утечки через щиты пространство между ними и концом водобоя заполнено водой до уровня дна нижнего канала.

В конце водобоя делаем зуб глубиной 0,8 м, толщиною 0,40 м; наименьшую-

толщину водобоя принимаем 0,40 м.

Наметим примерную толщину водобоя в точке, отстоящей от начала его ∞ на 1 м, расстояние от конца водобоя до этой точки (4) будет около

$$l_4 = 6.5 + 0.8 + 0.4 - 1 = 6.7 \text{ m}.$$

Искомая толщина будет равна

$$t_4 = 0.83 h = 0.83 l = 0.83 . 6.7 \cdot \frac{1}{9} = 0.62 m.$$

Длина контура водобоя и понура (при толщине последнего в 0,3 м) будет равна

$$l' = 0.3 + 2.5 + 6.7 = 9.5 \text{ m}.$$

Следовательно, на долю зуба при-

$$L_s = L_0 - l' = 12,6 - 9,5 = 3,1$$

Зная L_s, t₄ и очертание низового зуба, составляем следующий эскиз флютбета (рис. 14).

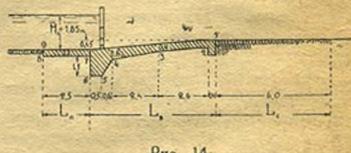


Рис. 14

Таблица 13

Nº Nº	l	t расчетная	t принятая		
2	1,6		0,40		
3	4,2	0,39	0,40		
4	6,6	0,11	0,60		
5	7,9	_	_		
6	8,4	_	_		
7	9,8	- 1	0,30		
8	12,3	_	0,30		
9	12,6	-	_		

Поверка размеров приведена в таб-

Незначительная перегрузка в точке 4—кажущаяся, так как, разлагая выпирающее давление, нормально направленное по отношению подошвы флютбета, на вертикальную и горизонтальнуюсоставляющие, получим результативное давление немного меньшим принятогов расчете.

§ 10. Теюрия струйного движения грунтовой воды

1. Основные предпосылки

Теория струйного движения грунтовой воды не ограничивается рассмотрением движения только одной струйки по стыку флютбета с грунтом основания (как это было рассмотрено выше), а рассматривает движение по всей области проницаемого грунта.

Так, рассматриваемое движение ограничивается следующими двумя существенными условиями (соблюденными также и в теории Бляя): движение рассматривается установившееся и плоское, то-есть изменяющееся вдоль флютбета (по длине х) и в глубь грунта (по глубине z); в направлении же, перпендикулярном к продольной оси сооружения (то есть по третьей координате у), движения не происходит. Кроме того, проницаемому грунту основания приписываются следующие свойства:

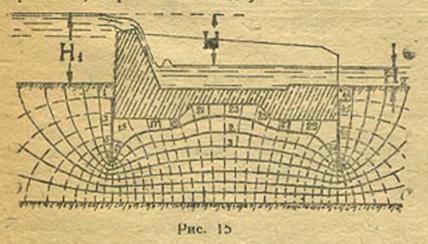
1. Считают, что грунт по всей области однороден по своим фильтрационным

свойствам (то есть одинаков по механическому составу и порозности).

- Движение воды по порам грунта различают двух видов—местное, когда обтекаются отдельные частицы грунта, и главное—характерное для общего направления и интенсивности потока.
- 3. Элементарные струйки воды, образуя главное течение, непрерывны; извилистость этих струек вследствие местных течений не нарушает непрерывности струек главного течения, почему извилистостью этой в теоретических подсчетах пренебрегают, учитывая ее (не явно) в оценке фильтрационной характеристики грунта (то есть в коэфициенте фильтрации).
- Выполнение предыдущих свойств предполагает достаточно большие размеры области потока по сравнению с величиной отдельных зерен грунта.

При выполнении перечисленных условий теория струйного движения дает возможность подсчитать для любой точки проницаемого грунта скорость движения и пьезометрическое давление потока в ней.

Отсюда, как следствие, получаем возможность подсчитать распределение давлений потока вдоль флютбета, подсчитать скорости выхода воды через дно нижнего бьефа и по ним потери воды на фильтрацию; зная давления на флютбет, можно по формулам подсчитать его толщину; достаточность длины флютбета может быть поверена по выходным скоростям потока, которые не должны превосходить допускаемые пределы.


2. Определение элементов потока

Аналитическое определение элементов потока, то-есть давлений, скоростей и их направлений, сводится к решению уравнения Лапласа; решение этого уравнения довольно сложно и затруднительно, поэтому здесь на нем останавливаться не будем, отсылая к нашей книге "Расчет движения грунтовых вод". Остановимся на графическом приеме решения этого уравнения, выяснив предварительно, в чем же будет заключаться решение.

Графическое решение, очевидно, будет заключаться в полученной на основании его такой наглядной (буквально) картины движения, пользуясь которой можно будет указать для любой точки потока элементы его.

Такой картиной движения является так называемая сетка движения, то-есть изображение направления элементарных струек воды (траекторий движения) и линий, вдоль которых пьезометрические давления везде одинаковы .

Пример такого графического построения сетки движения приведен ² на рис. 15, где сплошными линиями показаны линии течения (траектории струек) под симметричным флютбетом, а пунктирными—линии равных давлений. Будем называть пространство, ограниченное двумя соседними линиями равных давлений (или потен-

циальными линиями), поясом давлений; на рис. 15 мы имеем таких поясов давлений M=44 и так построенных, что при переходе от одной потенциальной линии к другой давление изменяется на $^{1}/_{44}$ Н, где H— действующий напор, равный $H = H_{1}$ — H_{2} . Так, например, вдоль первой эквипотенциали давление везде равно H_{1} (принимая за плоскость сравнения дно канала); вдоль последней потенциали давление везде равно H_{2} ; во внут-

Такая сетка движения будет изображать поле электрического потенциала, магнитное поле, тепловое поле и другие для стационарных условий; подробнее см. в моей книге "Движение грунтовых вод под гидротехническими сооружениями.

² Сетка построена не совсем точно, особенно близ флютбета; продолжение у сетки за пределы чертежа также указывает на ее неточность; рисунок заимствован у A. Schoklitsch "Der Wasserbau"

с некоторыми исправлениями.

реннем углу за первым шпунтом, до которого от дна верхнего бъефа имеется, примерно, 14,5 полос давлений, давление будет равно

$$H_2 + \frac{14,5}{44}$$
 Н и т. д.

Таким образом, семейство эквипотенциалей позволяет найти давление в лю-

бой точке потока, а, следовательно, и вдоль флютбета.

Назовем пространство, ограниченное двумя соседними траекториями, лентой расхода; на рис. 15 имеем N = 8 лентам расхода и так построенных, что в каждой ленте протекает один и тот же расход; отсюда очевидно, что общий расход.

на фильтрацию будет равен 8 элементарным расходам.

Каким условиям должна удовлетворять сетка движения, чтобы в ней через каждую ленту протекал одинаковый расход и чтобы через каждый пояс терялась одна и та же доля напора? Таких условий существует два, это—пересечения траекторий и потенциалей должны быть нормальны между собой, и второе—сетка должна быть составлена из подобных прямоугольников; лучшая форма для

таких прямоугольников-квадрат.

K сожалению, нельзя дать конкретных указаний к построению такой сетки; общее правило для ее построения можно так формулировать (применительно к рис. 15): слой водопроницаемого грунта между флютбетом сооружения и подстилающим водонепроницаемым слоем (скала) разделяют на одинаковое произвольное число полос (N=8), при чем ширина полос в пределах отдельных частей флютбета должна быть одинакова, изменяясь вместе с изменением ширины водопроницаемого слоя; так, под утолщениями флютбета ширина будет меньше; при подъ-

емах флютбета-больше и т. д.

Построив так плавные линии раздела полос, принимают их в первом приближении за линии течения, считая первой линией течения очертание подошвы
флютбета; пространство между этой линией и следующей разделяют, начиная от
точки дна верхнего бьефа, на непрерывный ряд криволинейных квадратов, продолжая их до дна нижнего бьефа; так поступают со второй и следующими полосами.
Соединяя соответственные точки раздела кривыми, должны получить последние
плавными и ортогональными к ранее проведенным линиям течений. Последняя
линия течения (нижняя) должна бы совпадать с поверхностью скалы, но так как
этого не удается достигнуть первым приближением, то изменяют очертание второй
линии течения на плавную, объемлющую флютбет кривую и проделывают снова
разбивку области грунта на криволинейные квадраты, вследствие чего изменяются
направления и расположения остальных линий течения и перпендикулярных к ним
линий разных давлений.

Проделав несколько таких приближений, добиваются плавного очертания всех линий, образующих прямоугольную сетку, и совпадения нижней линии течения с

поверхностью скалы.

Поверкой правильности построения сетки может служить прием проведения диагоналей; семейство их должно состоять из плавных кривых, ортогонально пересекающихся между собой и образующих также квадратную сетку; диагонали в каждом квадрате должны быть, примерно, одинаковой длины.

Построив так сетку из криволинейных квадратов, можно по ней определить все элементы потока грунтовых вод; так, расход воды на фильтрацию под флют-

бетом будет равен

где k-коэфициент фильтрации грунта основания;

 $H = H_1 - H_2 -$ действующий напор;

В — ширина флютбета;

М — число поясов давлений;

N — число лент расхода.

Формула составляется по следующим соображениям: пусть в сетке движения имеется N лент расхода, то есть полос, расположенных между линиями течений, так построенными, что между каждой парой соседних линий течений протекает одна и та же доля общего расхода воды, и М поясов давлений, то есть полос, расположенных между линиями давлений, так построенных, что между каждой парой соседних линий равных давлений погашается одна и та же доля действующего напора Н. Рассмотрим какой-либо один из элементарных криволинейных квадратов сетки; потеря напора при протекании воды по квадрату равна Н:М; путь, на котором погашается этот напор, равен средней длине квадрата △I; расход воды, протекающий через один квадрат, будет равен

$$\wedge Q = v\omega = kI\omega$$

тде ω — живое сечение, равное В. △s, то есть равное средней ширине квадрата △s, умноженной на ширину потокаВ;

к — коэфициент фильтрации;

l — уклон потока, равный $(H:M): \triangle l = H:M \triangle l$, следовательно, $\triangle Q = kHB \triangle s: M \triangle l$.

Общий расход потока будет равен сумме элементарных расходов для всех квадратов, расположенных в поясе давлений, то есть

$$Q = N \triangle Q = kHB \frac{N}{M}$$

так как \triangle s и $\triangle l$ в случае квадратичной сетки движения равны, а потому могут быть сокращаемы.

Если сетка не квадратичная, а составлена из криволинейных прямоугольников, подобных вследствие конформности их построения, то здесь отношение \triangle s к $\triangle l$ также постоянно для всей сетки, но не равное единице, как это мы имели для квадратичной сетки.

Относительно определений давлений потока по сетке выше были сделаны пояснения; укажем здесь на следующее свойство сетки; если бы сквозь кладку флютбета провести пьезометрические трубки в грунт и окончить их все на одной какой-нибудь эквипотенциали, то во всех трубках вода будет стоять на одном уровне; например, пусть концы трубок будут располагаться в разных точках потенциали, разделяющей 16 и 17 пояса; тогда во всех трубках высота воды будет равна

$$H_2 + \frac{16}{44}H = \frac{4H_1 - 7H_2}{11}$$

Сетка движения позволяет определить и скорости движения; выше при определении расхода мы имели для какого-нибудь квадрата скорость, равную

$$v = kI = \frac{kH}{M \triangle I}$$

при прежних обозначениях.

В тех случаях, когда слой проницаемого грунта ⊤ очень глубок, примерно, около одной длины для плоского флютбета L и не менее 1,25—1,5 для флютбета одношпунтового (то есть ⊤∞1,5 L), построение сетки несколько изменяется. Теоретические выкладки и результаты наших опытов показывают, что интенсивность движения потока грунтовых вод по мере удаления от флютбета в глубь грунта быстро затухает и примерно на указанных глубинах движение настолько слабо, что для слоев грунта, еще более низко расположенных, можно им пренебречь. Далее из теории струйного движения известно, что если мы примем любую из траекторий движения (то есть линий течений, линий тока) за новую границу области движения, то оно нисколько от этого не изменится. Последнее обстоятельство, в

См. "Движение грунтовых вод под гидротехническими сооружениями". Активная зона грунта по опытам оказалась равной около 0,5 –0,75 L, считая по дну канала в обе стороны от флютбета. В опытах с сквозными флютбетами она оказалась около (0,75 –1,0) L; см. "Расчет сквозных флютбетов".

связи с затуханием движения по мере понижения в грунт, в применении к построению сеток движения для случаев очень мощных слоев проницаемого грунта используется следующим образом: мы ограничиваем рассмотрение движения глубиной T = L (или 1,25 L), задаемся формой пограничной линии течения—для плоских флютбетов эллипсом с полуосями $b \cong L$, $a \cong 1,2$ L.

В случае шпунтовых флютбетов за очертание активной зоны принимается плавная кривая, проходящая через точки дна канала, отстоящие от концов непроницаемых частей флютбета (понура и водобоя) на (0,8-1) L и через точки, расположенные на (1-1,5) S по вертикали от нижнего конца шпунта (S-1,5) в по вертикали от нижнего конца (S-1,5) в по вертикали

Аналитическое определение элементов потока грунтовых вод в большинстве случаев очень громоздко, требует знания специальных отделов математики (конформные изображения) и вряд ли получит широкое распространение без введения упрощений в решения уравнений.

С этой стороны составление готовых решений для некоторых схем флютбетов может помочь распространению струйной теории, как дающей более экономные размеры флютбетов.

Эти решения должны быть обобщенными, то-есть такими, в которых размеры сооружения указываются не абсолютные, а относительные, приняв размер какого-либо элемента сооружения за единицу масштаба.

Согласно струйной теории, давления воды на флютбет распределяются по кривым, не зависящим от фильтрационных свойств грунта (то есть от коэфициента К) и далеко отклоняющимся от прямой по Бляю; в большинстве случаев криволинейное распределение дает меньшие давления в верхней части флютбета и большие в нижней—по сравнению с прямолинейным распределением.

Такое соотношение позволяет делать флютбеты меньшей толщины в начале, не увеличивая ее в конце, где толщина определяется не расчетом, а чаще ее конструктивным минимумом.

Аналитическое и графическое решения дают возможность построения эпюр скоростей входа и выхода воды по дну каналов вдоль подошвы флютбета и построения изотах по области движения.

Вследствие принятого метода решения (конформное преобразование) и очертаний флютбета (составленного из прямых линий с резкими углами поворотов) в местах внешних поворотов контура флютбета (например, под шпунтами и зубъями) получаются теоретически бесконечно большие скорости фильтрации.

Такие точки, в действительности—небольшие области, с сосредоточением больших скоростей движения, называются фокусами, и те из них, за которыми вода выходит в нижний бьеф, создавая угрозу выноса частиц грунта, называются фокусами размыва.

Для нейтрализации влияния низового фокуса размыва необходимо устройство в конце флютбета зуба или шпунта на такую глубину, на которой скорости фильтрации могли бы выравняться и подойти к дну нижнего бъефа, не угрожая вымыву грунта. Полезно для усиления грунта укреплять его обратными фильтрами и т. п.

§ 11. Определение давлений на флютбет по номограммам

Ниже приводятся готовые решения для отыскания давлений на флютбеты 1.

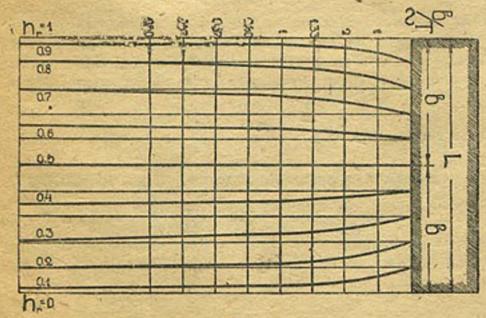
1. Плоский флютбет, расположенный на мощном слое проницаемого грунта— (теоретически на безграничном слое). За единицу масштаба принимаем полудлину флютбета, то есть считаем b = 1. Располагая начало координат по средине флютбета, получим следующие значения уделеных давлений b, для абсцисс x, выраженных в долях b.

¹ Номографированные ниже уравнения см. "Расчет движения грунтовых вод".

x	1,0	-0,9	-0,8	-0,6	-0,4	-0,2	0 0,50
hr	-1	,86	0,80	0,71	0,63	0,56	
x hr	0 0,50	0,2 0,44	0,4 0,37	0,6 0,27	0,8 0,21	0,9 0,14	10

 $Y_{дельным}$ давлением называем то, которое было бы в точке с абсинссой при $H_1=1,\,H_2=0$ и $H=H_1-H_2=1.$

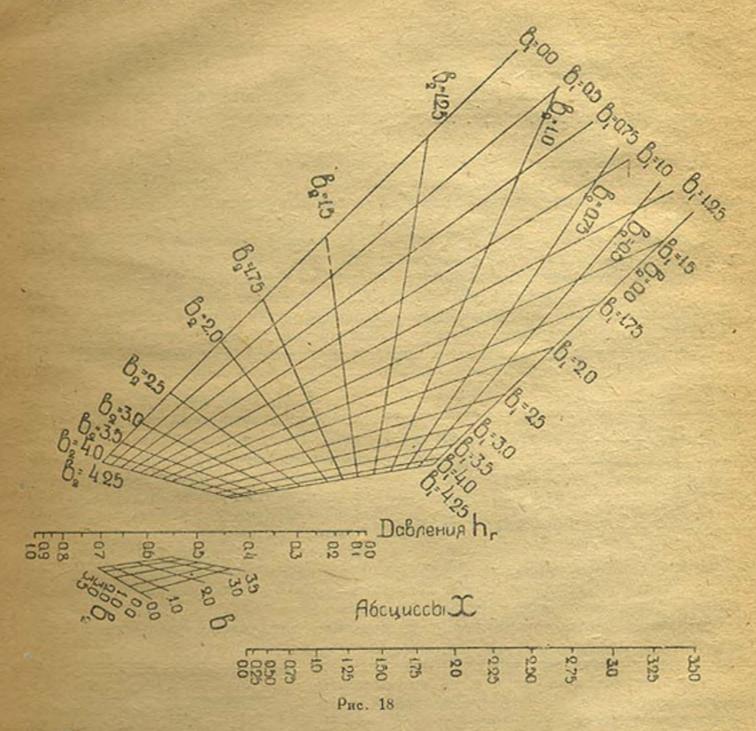
Полное давление в рассматриваемой точке будет равно h = H₂ + h_r H.
2. Условия предыдущего случая, но флютбет заглублен на величину tв грунт.



При отношениях t: L≤0,1 (см. рис. 16) отыскание давлений на флютбет ведется по предыдущей таблице. При иных соотношениях tк L, или отношении t : b, давления на фаютбет получают по номограмме рис. 16 таким образом: для заданного отношения t к b проводят горизонталь, пересечение которой с линиями удельных давлений h. дает абсциссы точек флютбета (приведенные, то есть выраженные в долях полудлины флютбета), в которых давления равны отметкам соответствующих линий.

Пример. Задано b=4 м, $H_1=2$ м, $H_2=0$; t=1,2 м; находим t:b=0,3; проводим горизонталь через точку t|b=0,3 и получаем следующее распределение давлений по подошве флютбета.

				A CONTRACTOR		The state of the s	-		The second
Абециссы х Удельные hr	-1,0	-0,96	_0,74	-0,39	0	0,39	0 74	0,96	1,0
Удельные hr	0.83	0.8	0.7	0.6	0.5	0 4	0,3	0.2	0,17
Абсолютные h	1,66	1,6	1,4	1.2	10	0.8	0,6	0,4	0,34


3. Плоский флютбет, расположенный на проницаемом слое грунта глубиною Т.

₽ Рис. 17

Для отыскания давлений на флютбет построена номограмма (рис. 17), пользование которой схоже с предыдущей: находят отношение полудлины флютбета в к глубине Т; соответственно найденному отношению проводят горизонталь, пересечение которой с кривыми удельных давлений h, укажет абсциссы точек и давления в них.

4. Плоский одношпунтовый флютбет, расположенный на мощном водопроницаемом слое грунта. Для координатной системы положительная ось ох направляется по подошве флютбета в сторону нижнего бъефа; ось оу — вниз по шпунту, и, принимая за единицу масштаба длину шпунта S=1, удельные давления отыскиваются с помощью номограммы рис. 18.

Таким образом, по схеме флютбета находят длины верховой части флютбета b_1 и низовой b_2 , считая S=1; по найденным значениям b_1 и b_2 находят на сетке номограммы точку пересечения прямых b_1 и b_2 . Найденную таким образом точку последовательно соединяют прямыми с точками шкалы абсцисс х от о до $x=b_2$.

Пересечения указанных прямых со шкалой давления укажут давления филь-

трационного потока для соответствующих абсцисс.

Определение давлений в точках с отрицательными х (то есть для верховой части флютбета) находят аналогично предыдущему по правой сетке помеченных линий b₁ и b₂. При таком определении b_r для точки х = ±0 получается два значения h_r, разность между которыми показывает величину напора, погашаемого шпунтом. Отношение этой разности к длине шпунта (действительной, выраженной в метрах) является так называемым удельным эффектом шпунта.

Пример. Определим давление фильтрационного потока на флютбет для следующих конкретных условий: $B_1 = 3$ м; $B_2 = 17$ м; S = 4 м; $H_1 = 3,5$ м; $H_2 = 0,5$ м.

Принимая S за единицу, получим $b_1 = 0.75$, $b_2 = 4.25$.

В правом нижнем углу номограммы находим точку пересечения $b_1 = 0.75$ и $b_2 = 4.25$ и соединяем ее последовательно прямыми с точками шкалы x = 0.50; 1; 2; 3; 3.5; пересечение этих прямых со шкалой h_1 даст величины давлений в точках флютбета с абсциссами 0; 0.50 и т. д.

Таблица 16

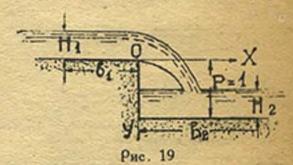
	000			B. 100 S.			
Абециссы (в долях дливы шпунта)	0	0,50	1.	2	. 3	3,5	4,25
Давление hr по номогразме	0,57	0,55	0,52	0,43	0,31	0,24	0
Давление h в метрах	2,21	2,15	2.06	1,79	1,43	1,22	0,50

Определение давлений h_r для верховой части (с отрицательным x) можно сделать аналогично предыдущему, пользуясь правой сеткой номограммы; но можно воспользоваться и левой сеткой, что при ее более крупном масштабе дает более точные цифры. Для этого воспользуемся следующим свойством кривых: для сооружений, имеющих $b_1:b_2=A:B$ и $b_1:b_2=B:A$, кривые давлений в верховой и низовой частях флютбета обратно симметричны. Следовательно, для данного случая следует найти давления в низовой части флютбета (левая сетка), обратив отношение b_1 к b_2 , то есть считая $b_1:b_2=4,25:075$; найденные таким образом h'_r следует вычесть из единицы; полученные разности и будут приведенными давлениями в верховой части флютбета; поэтому, найдя на левой сетке точку с $b_1=4,25$ и $b_2=0,75$, соединяем ее прямыми с шкалой х и получаем соответствующие h'_r (см. табл. 17).

4	Таблица 17								
Абециссы-х	0	0,25	0,50	0,75					
h'r по номограмме .	0,14	0,13	0,10	0					
hr по номограмме	0,86	0,87	0.90	1,00					
h в метрах	3,08	3,11	3,20	3,50					

5. Плоский двухшпунтовый флютбет; грунт по предыдущему. Если второй шпунт расположен в конце водобоя и несколько короче первого, то для отыскания давлений на флютбет можно применить следующий прием, исполь зовав предыдущую номограмму. Повертывают на эскизе флютбета низовой шпунт до совмещения его с дном ниж-

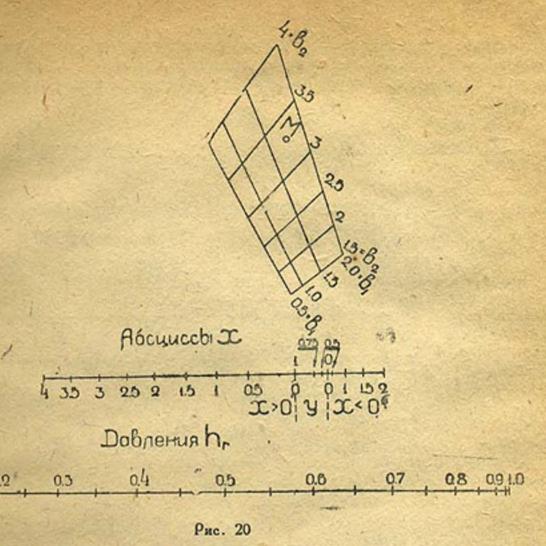
него канала и рассматривают теперь флютбет как одношпунтовый, у которого верховая часть имеет длину как и прежде, то есть b₁, а низовая b₂ + S₂, то есть как бы удлиненная на длину низового шпунта.


Найденные по номограмме рис. 18 давления для такого флютбета и будут

искомыми для заданного двухшпунтового.1

б. Одноступенчатый перепад без шпунта Слой водопроницаемого грунта, на котором расположен перепад, считаем безграничным. Принятая координатная система приведена на рис. 19.

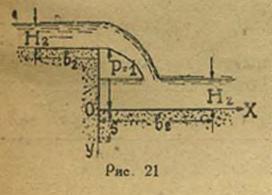
За основной размер принимаем высоту перепада: единица длины = $P = \pi/_2$. Распределение давлений по флютбету выражается следующей


номограммой (см. рис. 20 на стр. 33).

Пользование номограммой таково: по заданным—высоте стенки падения Р, длинам верховой и низовой частей флютбета В₁ и В₂, определяют в₁ и в₂ (в долях Р) и находят соответствующую им точку на сетке помеченных линий в₁ и в , соединяют эту точку прямой с точками шкалы координат (х, у); продолжение этой прямой до шкалы давлений укажет величину приведенных давлений в этих точках; координатная шкала выражена также в долях Р.

Пример. Опреденять давления по флютбету перепада следующих размеров: P = 1,2 м; $B_2 = 4,0$ м; $B_1 = 2,1$ м; $H_1 = 0,9$ м; $H_2 = 1,0$ м. Находим

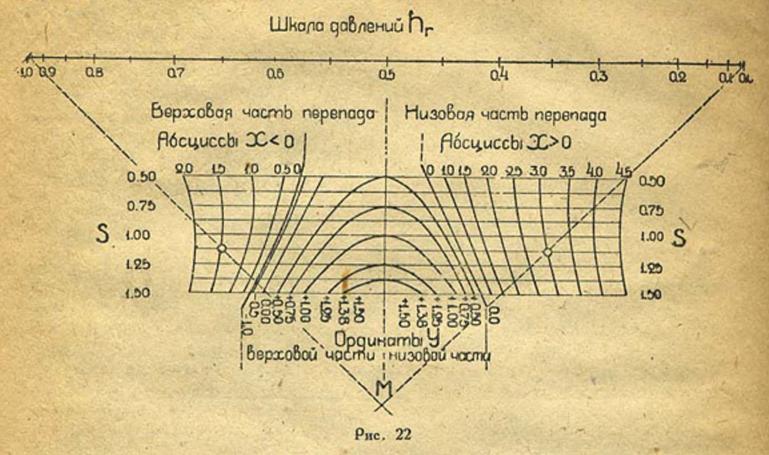
Обоснование такого приена см. "Расчет сквозных флютбетов", 1932 г., стр. 14.


 $b_1 = 2,1:1,2=1,75;$ $b_2 = 4,0:1,2=3,33;$ соединяя соответствующую найденным b_1 и b_2 точку M на сетке, точку M со шкалой давлений, находим величины последних (см. табл. 18).

		West College		Sy Care	and the same		1000			аоли	ga 10	
	Координаты { ум хм х по шкале	$\begin{bmatrix} 0 \\ -21 \\ -1,75 \end{bmatrix}$	0 - 1.8 - 1,5	- 1.6 - 1.6	0 0,6 - 0,5	0 0 0	1,2 0 0	1,2 0,6 0,5	1,2 1.8 1,5	1,2 2,4 2	1,2 3,6 3	1,2 4,0 3,33
ении	Приведенные по номограм.	1,00	0,88	0,80	0,76	0,74	0,66	0,55	0,41	0,34	0,16	0
Дави	Подечитанные в метрах	1,10	0,97	0,88	0,84	0,81	0,73	0,60	0,45	0,37	0,18	0

Последняя строчка таблицы указывает давления на флютбет сверх H₂, то есть равные приведенным давлениям, умноженным на разность горизонтов воды в верхнем и нижнем бъефах.

7. Одноступенчатый перепад со шпунтом.

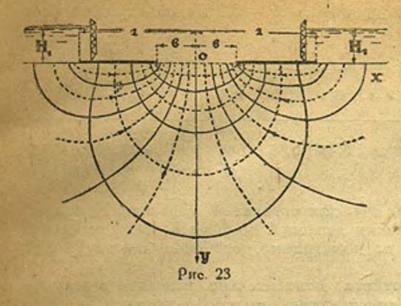

Условия залегания водопроницаемого грунта те же, что и выше; координат-

нимается высота стенки падения, то есть Р=1. На основании расчетных уравнений построена номограмма № 5 (рис. 22) для определения давлений на флютбет для следующих пределов изменения: В₁—от 0 до 2Р; В₂—от 0 до 4,5 Р и S—от 0,5 до 1,5 Р. Применение номограммы таково: по заданным размерам частей сооружения понура В, водобоя В₂, стенки падения Р и шпунта S определяют соответствующие им приведенные величины В₃, В₂ и S, то есть выражают их в долях длины стенки

CAHHHPH -

падения. Далее отмечают на сетке номограммы точку пересечения вертикали с получившейся отметкой S и наклонной линии с отметкой x, равной получившейся в₂ (на рис. 22 обведено кружком); через найденную точку и точку шкалы давле-

ния $h_r = 0$ проводят прямую. Далее находят пересечение той же вертикали S с наклонной линией $x = b_1$ (на рис. 22 обведено кружком), через последнюю точку и точку шкалы давлений $h_r = 1$ проводят прямую до пересечения с уже проведенной прямой.


Через полученную таким образом точку М и точки шкалы абсцисс и ординат с заданной пометкой проводят прямые до пересечения со шкалой давлений, отметки которой и укажут давления в соответствующих абсциссах и ординатах.

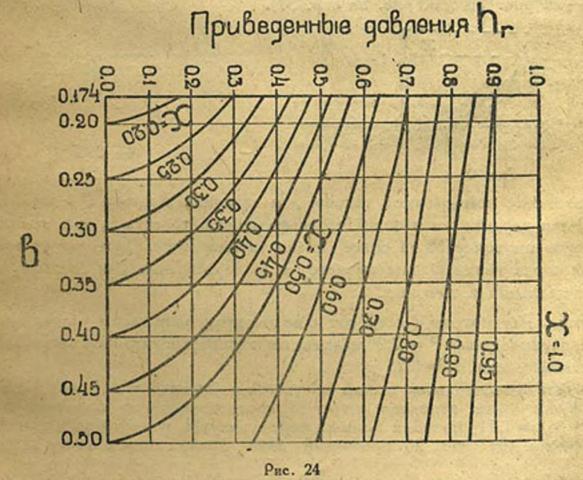
Пример. Пусть требуется определить давления потока грунтовых вод на флютбет перепада размерами:

$$B_1 = 2,25 \text{ M}$$
 $P = 1,50 \text{ M}$ $H_1 = 1,25 \text{ M}$ $B_2 = 4,50 \text{ M}$ $S = 1,70 \text{ M}$ $H_2 = 1,20 \text{ M}$

H=1,55 м. Определяем приведенные величины, то есть b=1,5, b=3,0 и S=1,13. Проводим прямые (пунктирные на номограмме) через пересечение линий S=1,13 и +x=3,0 и точку $h_r=0$; и через пересечение линий S=1,13 и -x=1,5 и точку $h_r=1$. Пересечение этих прямых дает точку M. Соединяя точку M через координаты x=3,0; 2,5...-1; -1,5, взятые на прямой S=1,13, со шкалой давлений, получаем следующие значения давлений.

						を計画						Табл	uya 15
Координаты	Приведенные { х	3 0	2.5	2 0		1 0	+0	+01,13	-0 0	0 1,0	-0,5 -1,0	$\begin{bmatrix} -1.0 \\ -1.0 \end{bmatrix}$	-1,5 $-1,0$
Кооря	Сооруженные { х у	4.5	3,75	3.0	2,25	1.5	+0	1,70	-0 0	-1,5	-0.75 -1.5	-1,5 1,5	-2,25 1,5
E KEL	Приведенные по номогр	0	0,17	0,23	0,28	0,32	0,34	0.50	0,71	0,74	0,77	0,83	. 1
Давления	Подечитанные	0	0,26 0,10	0,36 0,20	0,43	0,50 0,40	0,53 0,53	0,77 0,83	1,10 1,05	1,15 1,25	1,19	1,29 1,45	1,55 1,55

Последние две строки таблицы указывают давления на флютбет относительно плоскости сравнения, проходящей через уровень воды в нижнем бъефе; численно они равны для подсчитанных давлений произведению значений 3-й строки на $H = H_1 + P - H_2 = 1,55$ м.


8. Плоский флютбет шлюза (например, судоходного или регулировочного с верховыми и низовыми шандорами), расположенного на безграничном слое проницаемого грунта (рис. 23). Во время работы шлюза может представиться случай ремонта его, когда за и перед

шлюзом может быть вода при отсутствии ее в шлюзе; находимая из таких условий толщина флютбета получается весьма большой; в таких случаях в целях уменьшения толщины флютбета в средней его части возможно делать отверстия (с устройством под ними обратнного фильтра) для пропуска фильтрационных вод.

Ниже рассматривается простейший случай такого флютбета, когда глубина

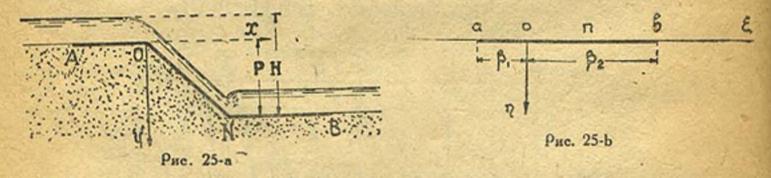
воды за и перед шлюзом одинакова.

Принимаем за единицу масштаба полудлину флютбета, то-есть полагаем ее = 1. Расчет давлений ведется по номограмме (рис. 24), пользование которой таково: положим, необходимо определить распределение давлений по флютбету шлюза при полудлине проницаемой части его, равной b = 0,2; отыскиваем на номограмме вертикаль с пометкой b = 0,2 и сносим по горизонтальным линиям на шкалу давлений h_r (слева) точки пересечения прямой b = 0,2 с кривыми абсцисс х (x = 0,2; 0,25 . . . 0,95; 1,00); тогда отсчет по шкале h_r так снесенных точек и

даст величины давлений (приведенных) в этих точках. Переход от приведенных давлений и от условного масштаба длин флютбета элементарно прост и является

· ·	0,2	0,25	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
h _г по номограмме	0	0,24	0,33	0,45	0,55	0,62	0,69	0,76	0,84	1,0
hr по Баяю	0	0,06	0,13	0,25	0,38	0,50	0,63	0,75	0,88	1,0

В последней графе таблицы приведены для сравнения давления h_r, подсчитанные по В. Бляю; как видно, значения давлений по Бляю довольно сильно расходятся от значений h_r полученных до номограмме, особенно для внутренней


части флютбета.

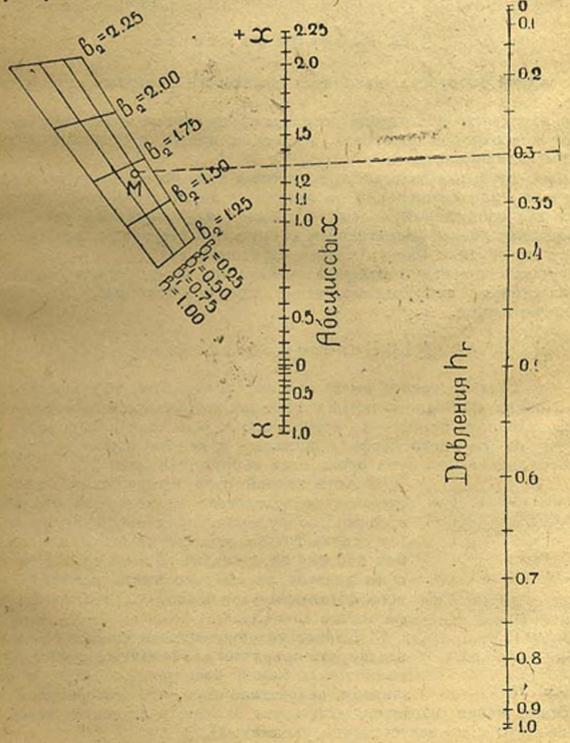
Хотя давления в этой части флютбета относительно невелики и толщина флютбета здесь определяется скорее конструктивными соображениями, чем расчетом, тем не менее распределение давлений здесь (резкое уменьшение их у внутреннего конца непроницаемого флютбета) указывает недостаточность одного только статического расчета: в самом деле, если давления (в общем—небольшие) быстро уменьшаются, то имеется налицо большой пьезометрический уклон потока, а, следовательно, возможно ожидать появления больших скоростей движения.

Отсюда, как следствие, получаем, что одни давления еще не определяют наихудших условий работы флютбета; необходимо еще делать поверку на вымывающие скорости движения воды.

9. Флютбет быстротока с одиночным уклоном при безграничном залегании проницаемого грунта.

Координатная система приведена на рисунках (25-а и 25-b), расчетная номограмма—на рис. 26 (см. рис. на стр. 37).

Пользование номограммой таково: для заданных в долях Р—высоты стенки падения, длин верховой и низовой части флютбета, то есть b, и b, находят соответствующую им точку М на сетке слева номограммы. Проводя прямые через точку М и через точки шкалы абсцисс х до пересечения ими шкалы давлений b, найдем давления в точках х.


Пример. Рассмотрим быстроток с водоскатом одиночного уклона следующих размеров: падение равно P=2,20 м, длина верховой непроницаемой части $B_1=1,15$ м, длина низовой части $B_2=3,75$ м.

Находим относительные длины части сооружения: $\rho=1$; $b_1=0.52$; $b_2=1.71$; на сетке номограммы замечаем точку M, соответствующую помеченным линиям $b_1=0.52$ и $b_2=1.71$; проводя прямые через точку M, шкалу x-ов и шкалу h_2 , находим давления (на рис. 26 проведена одна прямая через точку M, x=1.3 и $h_2=0.3$)

В результате получаем следующее распредение давлений по флютбету (см. табл. 19).

CN	Приведенные	- 0,52	- 0,4	- 0,2	0	+ 0,3	+ 0,5	1,0 +	+ 0,9	+ 1.1	+ 1,3	+ 1,5	11,71
Абециесы	Абсолютные	- 1,15	88'0 -	- 0,44	0	99'0	1,10	1,54	1.98	2,42	2,86	3.30	3,75
me hr	По номограмме	1	06.00	0,83	0,80	0,72	99'0	0,58	0,50	0,38	0,30	0,20	0
Давление	По В. Баяю	1	96'0	0,88	0,80	99'0	0,54	0,43	0,32	0,23	0,16	0,08	0

В последней строке таблицы для сравнения приведены давления, подсчитан-

ГЛАВА III

Флютбеты шлюзов в условиях свободного потока

§ 12. Размеры флютбета

Длины частей флютбета находятся по тем же формулам, что и для напорного потока.

Так же находится и толщина его, если грунтовые воды залегают не ниже 1,0-2,5 м от поверхности флютбета, применяя при этом меньшие из указанных

выше значений коэфициентов п.

При более глубоком залегании грунтовых вод просачивающаяся из каналов вода, уходя вниз, или совершенно не оказывает давления на сооружения, как это наблюдается для сооружений мелкой и средней ирригационной сети, или давит только на низовые концы сопрягающих сооружений (перепады, крутые быстротоки), если они входят или близки к зоне грунтовых вод.

Для первых сооружений толщина назначается конструктивно, с поверкой об-

будет рассмотрен ниже.

§ 13. Боковое обтекание

Грунтовая вода протекает не только под флютбетом, но и за стенами сооружений—в условиях свободного потока. Поверка устойчивости грунта производится по двум направлениям: первое—по отношению горизонтальной проекции L₀, кратчайшего пути от верхнего бьефа к нижнему, к действующему напору; второе по длине горизонтального пути вдоль стен сооружения (рис. 27).

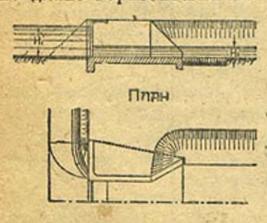


Рис. 27

Хотя второй путь всегда оказывается длиннее первого, но вследствие возможности образования за стенами сооружения продольной трещины в грунте (от осадка грунта, от деформации стен и т. д.), последняя поверка обязательна. В этом случае, по практическим данным, необходимо иметь длину такого бокового обтекания равной 0,67—0,75 от длины развертки флютбета L = CH.

Первое условие—отношение L₀ к Н—должно удовлетворять принятым для земляных плотин уклонам так называемых линий насыщений, взятых с некоторым запасом, вследствие того, что материковый грунт по

своим свойствам менее известен, чем грунт плотин, и зачастую менее надежен, чем плотиный (то есть искусственно уложенный).

Таблица 22

		Классы сооружений		
№№	Грунты	1	11,	ш
	1 1 1			
1	Песчаные	6	5	3,5
2	Лесс легкий	5	4	3,0
3	Лесс тяжелый	4,5	3,5	2.7
4	Гаинистые	4,0	3,2	2,4

Для мелких сооружений отношения L₀ к H принимать следует по таблице

-	2		-
Ta	61	шиа	23

1.		
Neve	Грунты	L _o :H
1	Илистые	3,5-4,0
2	Песчаные	3,0-3,2
3	Лесс легкий	2,5-2,7
4	Лесс тяжелый	2,0-2,2

ГЛАВА IV

Рационализация флютбетов шлюзов

§ 14. Ее основы

Флютбеты всех гидротехнических сооружений являются одной из дорогих частей, поэтому в целях удешевления строительства естественно стремление как к облегчению толщины флютбетов, так и к уменьшению их длины, в преде-

лах, не угрожающих прочности сооружения.

Стремление это особенно настоятельно требует своего осуществления в тех случаях, когда длина флютбета определяется, главным образом, не из условий гидравлического расчета (например, не условиями затопления прыжка или не условиями развития крепления нижнего бъефа сооружений, что имеет место для огромного большинства различных типов шлюзов), а преимущественно из условий гидротехнического расчета—именно необходимостью развития соответствующей длины контура флютбета (в целях получения скоростей подземного потока, меньших вымывающих).

бета, то значительно уменьшить его толщину.

И в том и другом случаях рационализация расчета флютбетов может итти в двух направлениях: в повышении допускаемого уклона подземного потока (дающее сокращение длины флютбета) и в понижении давления подземного потока на флютбет (дающее уменьшение его толщины).

§ 15. Метод уменьшения длины флютбетов

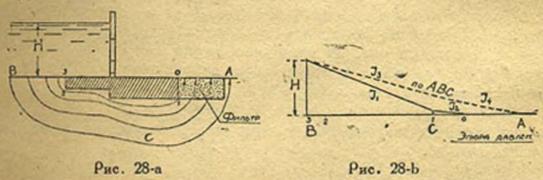
Метод уменьшения длины флютбетов сооружений, в которых длина эта определяется преимущественно гидротежническим расчетом, основан на замене в сливной части (рисберме) естественного грунта грунтом, искусственно составленным, допускающим большие вымывающие скорости, чем для естественного грунта.

Исходное положение гидротехнического расчета—назначать длину флютбета такой величины, чтобы скорости подземного потока не превосходили допускаемых, в своем развитии приводит к следующему: так как наиболее опасной (в смысле вымыва грунта) частью области подземного потока является сливная часть флютбета (рисберма), то собственно свойствами грунта в этой части области грунтового потока и определяется длина контура флютбета (или его уклон I, или коэфициент Бляя "С", или, и вернее, допускаемые скорости в этой области потока).

Очевидно, если заменить в этой части флютбета естественный грунт искусственным, более стойким по отношению к вымыву, то тем самым можно будет допустить больший уклон I потока, а, следовательно, и длину флютбета сделать

меньшей.

Но из сказанного нетрудно установить полную аналогию с соответствующим методом, применяемым в гидравлических расчетах, когда на различных участках надземного потока, имеющих и различные скорости, ставятся различной прочности (по отношению к размыву) облицовки (например, облицовки каналов, облицовки быстротоков и т. п.).


Основы расчета длины флютбетов в случае наличия различных грунтов в области грунтового потока (естественный грунт—под сооружением, искусственный—в части рисбермы) устанавливаются из рассмотрения следующих схем ра-

боты флютбета.

Первая схема-по всей области подземного потока грунт естественный, так

называемая обычная схема расчета;

вторая схема—часть рисбермы усилена фильтром—нормальная схема (рис. 28-а, b);

третья схема—часть рисбермы усилена фильтром при чрезмерном уменьшении длины водобоя (рис, 29, стр., 42).

Первая схема достаточно подробно описана в предыдущих параграфах

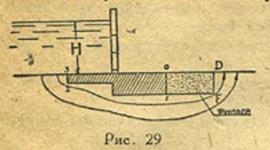
и на ней здесь останавливаться не будем.

Вторая схема (рис. 28-а, b). Назначение размеров водобоя и флютбета производится из следующих соображений. На участке естественного грунта, то есть между точками 3—2—1, пьезометрический уклон потока I₁ всегда будет больше¹ уклона I₂ на участке 1—0 грунта фильтра, так как фильтры делаются из более проницаемого грунта (смесь песка и гравия), чем естественный (для Средней Азии большею частью лесс); уклон первой струйки ВСА, обходящей фильтр и выклинивающейся в нижний бьеф через естественный грунт, будет не постоянным, а примерно, против начала фильтра (точка С) уклон будет претерпевать излом. Отсюда следуют следующие условия для безопасности вымыва грунта:

1) уклон I4 в зоне подземного потока, выклинивающемся в естественном грунте, должен быть не большим, чем уклон I, подсчитываемый по первой схеме;

2) уклон потока I, в фильтре должен быть менее предельного для данного грунта фильтра;

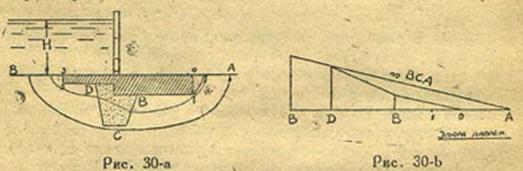
3) уклон I₁ в замкнутой зоне естественного грунта, примыкающего к фильтру,


должен быть не большим допускаемого.

Противоречие между первым и третьим условием (так как I₁ всегда больше I₄), кажущееся потому, что, во-первых, для всех грунтов, имеющих поверх себя защитный слой из более проницаемого грунта, допускаемые скорости всегда больше, чем для тех же грунтов, но не защищенных, а, во-вторых, потому, что зона грунта, через которую выклинивается подземный поток, подвержена еще и возможности размыва надземным потоком, то-есть находится в худших условиях работы, и повтому для нее вводится больший коэфициент запаса в допускаемой скорости вымыва; следовательно, для нее допускаемый уклон меньше, чем для зоны естественного грунта под водобоем. Сказанным устраняется кажущееся противоречие между допускаемыми уклонами I₁ и I₄.

Приведенные соображения касались преимущественно установления длины фильтра и только отчасти, когда говорилось об уклоне І2 в грунте фильтра, давались указания о назначении его толщины, именно, чтобы остаточная часть на-

Чтобы не осложнять описания схемы, считаем условно падение давлений везде прямолинейным.


пора перед фильтром (ордината над точкой I до излома уклона 1, и 1, в рис. 28-b) была погашаема на достаточной длине (толщина фильтра), дающей скорость фильтрации через него меньше допускаемой. При слабом тонком фильтре возможны случаи смыва его снизу вверх (аналогия с гриффоном); поверку в таких случаях возможно производить, пользуясь приемом проф. Терцаги.

Третья схема (рис. 29). При недостаточной длине водобоя (то есть когда I₁ больше допускаемого) возможны следующие случаи работы флютбета: а) фильтр недостаточной толщины; тогда при достижении некоторой величины погашаемого напора (на рис. величины H, так как глубина воды в нижнем бъефе принята равной нулю) фильтр будет разрушен, после чего должен последовать вымыв грун-

та из-под водобоя; б) фильтр достаточной толщины в отношении допускаемых скоростей (то есть I_2 меньше допускаемого), тогда естественный грунт вмоется в нижнюю часть фильтра (на рис. 29 сплошная линия 1-F), фильтр станет весьма трудно проницаем для воды и почти весь действующий напор будет гаситься на длине 3-2-1-F-D; если эта длина достаточна для развития уклона (меньшего допускаемого), вымыва грунта не произойдет.

При этом следует поверить, вследствие перераспределения давлений, расчет и водобоя, и фильтра.

Укорочение длины массивного флютбета может быть достигнуто также заменой естественного грунта искусственным, но более водоупорным, чем естественный, следующим образом: под концом понурной или под началом водобойной части флютбета естественный грунт заменяется более упорным (DCD рис. 30-а); тогда уклоны струйки вдоль подошвы флютбета выразятся ломаной линией (рис. 30-b); очевидно, размеры и состав заполнения DCB должны быть подобраны так, чтобы уклоны потока на участке 1—0 и в конце первой струйки BCA, огибающей заполнение DCB, были бы меньше допускаемого.

Уменьшение длины массивного флютбета, длина которого определяется преимущественно условиями гидравлического расчета, основан также на замене части естественного грунта под сооружением грунтом, искусственно составленным. Излишняя, против результатов гидротехнического расчета, длина флютбета вдвойне увеличивает объем кладки сооружения, вследствие большей длины его, а также вследствие большей толщины его, являющейся следствием предыдущего обстоятельства.

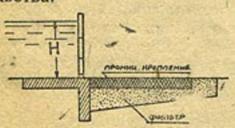
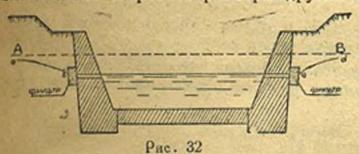


Рис. 31


Схема укладки искусственного грунта большей водопроницаемости, чем естественный, приведена на рис. 31; она качественно не отличается от рассмотренной; здесь вводится лишь поверх фильтра сильное водопроницаемое крепление ложа надземного потока и делаются более мощные фильтры. Делать ли водопроницаемым крепление тотчас же за щитами, или делать между ним и щитами часть

водобоя водонепроницаемой (бетонной и т. п.) в целях восприятия больших скоростей воды, вытекающей из-под щита, очевидно, решится экономическим подсчетом, так как технический расчет в обоих случаях принципиально один и тот же.

Рассмотренная в упрощенных схемах работа флютбета и фильтра в действительности осложняется рядом причин, из которых главнейшие—кольматаж русла верхнего бьефа, гасящий значительную часть действующего напора, и образование на подошве фильтра пленки (и механически вмывом мелких частиц, и биологически), менее водопроницаемой, чем остальная масса фильтра. Указанное обстоятельство сохраняет свою силу для метода уменьшения толщины флютбета, заключающегося в том, что описанное свойство фильтров (повышение допускаемых скоростей) используется для разгрузки всего сооружения (в целом) от давления на него грунтового потока.

Схемы конструкций флютбетов, рассмотренные выше, уменьшая их длину, в то же время уменьшают и толщину флютбетов.

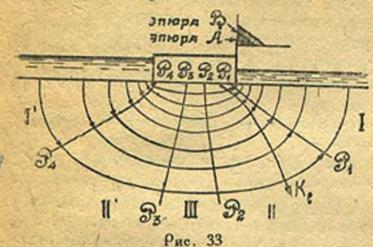
Применение фильтров и проницаемой для воды кладки сооружения может значительно сократить размеры других его частей.

Рассмотрим поперечный разрез гидротехнического сооружения (см. рис. 32); пусть линия АВ будет горизонтом грунтовых вод; тогда расчетным давлением для определения толщины флютбета будет h₀. Если на уровне воды в сооружении be сделать в стенках сооружения отверстия и защитить их фильтрами, то го-

ризонт грунтовых вод понизится, образуя воронки понижения по линиям депрессии ab и ed; тем самым расчетное давление на флютбет уменьшится до нуля и собственно расчет толщины флютбета отпадает; назначение толщины его будет определяться конструктивными соображениями. Такова идея разгрузки сооружения от давления подземного потока.

Очевидно, назначение размеров фильтров ничем не отличается от описанного выше; выбор линии расположения отверстий в большей степени зависит от условий работы сооружения при пропуске надземного потока.

Понижение горизонтов грунтовых вод до линий депрессий будет иметь следствием уменьшения давления земли на подпорные стены, вследствие увеличения угла "естественного" откоса осущенной земли и отсутствия гидростатического давления на стены грунтовых вод.


§ 17. Расчет проницаемого крепления

Выше мы видели, что толщина флютбета в общем мало сказывается на перераспределении давлений по его подошве (§ 11); далее, в виду хорошей водопроницаемости фильтра, пьезометрический уклон потока в нем будет мал, поэтому для расчета движения воды в грунте основания можно считать на подошве фильтра то же давление, что и на его поверхности.

Другими словами, расчет движения воды в грунте основания ведется для флютбета без учета наличия фильтра, то есть для условий более тяжелых, чем в действительности, что делает возможным использование приведенных выше номограмм, также графическое построение сеток движения или аналитическое решение уравнений движения.

Построив одним из указанных способов сетку движения и получив картину движения грунтовой воды, размер и длину проницаемого крепления за сооружение можно определить по способу проф. Терцаги.

Проф. Терцаги останавливается на явлениях прорыва плотин как вследствие вымыва грунта из-под них фильтрационным потоком, так и вследствие выпирания его, и предлагает, для предотвращения указанных явлений приемы, определяющие необходимый объем и длину креплений грунта за сооружением. Каждая из причин разрушения рассматривается им отдельно; для этого область грунта разделяется на зоны (пять вон на рис. 33), в пределах которых направление движения можно принимать приблизительно одинаковым. При таком предположении рассматривается равновесие грунта под действием гидродинамического давления потока грунтовых вод. Для элементарного цилиндра грунта площадью dF и длиною dl (по направлению линии тока) давление на площадку dF равно dp

$$dp = \gamma dh dF \dots (14),$$

Отсюда

$$V = KI = K \frac{dh}{dI} = \frac{dQ}{dF}$$
. (15),

где I — пьезометрический уклон на длине dl;

V и dQ — скорость и элементарный расход через сечение dF.

Относя силу dp к объему элементарного цилиндра, то есть, рассматривая ее как некоторую объемную силу, получаем для нее, принимая во внимание уравнение (15), следующее выражение

$$p = \frac{dp}{dF \cdot dl} = \gamma I$$

Направление силы р будет по касательной к линии течения, то есть будет почти совпадать с направлением силы тяжести в I¹ зоне и почти противоположно направлению ее в 1 зоне. Действие силы р в этой зоне будет равносильно уменьшению удельного веса в частиц грунта. При увеличении пьезометрического уклона до величины I₀ сила р может стать равной удельному весу грунта в под водой, что для единицы объема грунта выразится следующим уравнением

определяя величину в зависимостью

$$\delta = (1 - m)(\delta_1 - 1) \dots \dots \dots \dots (18),$$

где д,-удельный вес частиц грунта; т - порозность грунта.

При такой величине уклона частицы грунта как бы теряют свой вес; однако, вымыва частиц еще не будет вследствие недостаточной для сего величины скорости потока; при этом частицы грунта так переместятся, что сопротивление движению грунтовых вод станет минимальным. Такое положение сохранится и при дальнейшем увеличении уклона до некоторого критического значения его 1, при котором скорости будут уже достаточными для вымыва грунта. Значения критического уклона могут-быть повышены загрузкой части поверхности грунта I зоны хорошо пропускающим воду материалом, тогда давление рк должно преодолеть, кроме веса грунта, еще и вес нагрузки. Для определения величины и размещения нагрузок Терцаги для условия плоской задачи предлагает следующий прием: разделяют I зону на узкие вертикальные полосы и для каждой полосы подсчитывают вес грунта, за вычетом гидростатического давления и гидродинамического давления (умножением соответственно величины р по формуле (16) на объем полосы); просуммировав эти величины, откладывают отрицательное значение сумм вверх и, соединяя концы векторов их плавной кривой, получают эпюру А (рис. 33) дополнительных нагрузок на грунт І зоны. Построение эпюры подтверждается следующими соображениями: обозначив поперечную площадь одной полосы через F (очевидно, для плоской задачи F равно произведению ширины полосы на единицу), длину ее от поверхности грунта до раздельной линии Р1 Р1 через L и дополнительную нагрузку на площадку через Р, получают следующее уравнение равновесия:

Отсюда находят при заданных 7 — вес единицы объема воды F, L и I и для рассматриваемой полосы величину нагрузок

$$P = \gamma FL^{\bullet}(I_k - \delta) : \dots (20)$$

или, при выбранной нагрузке, величину Ik

Последняя формула показывает, что значение критического уклона зависит от удельного веса грунта под водой и не зависит от свойств грунта (состава и порозности его); следовательно, уравнение не нарушится, если верхний слой грунта заменить другим, с более крупными частицами, но того же удельного веса б. Отсюда получается возможность распространения уравнения (21) на случай неоднородных, слоистых грунтов под сооружением.

Конструктивно нагрузка должна быть так устроена, чтобы, не затрудняя свободного выхода фильтрационной воды, она предотвращала вымывание частиц грунта; поэтому необходимо под ней располагать фильтрационный слой, крупностьчастиц которого должна определяться из опыта; в случае устройства нагрузки ввиде плит с отверстиями, число и величина последних должны быть так подобраны, чтобы через них не происходило вымыва грунта фильтрационным потоком, и в то же время скорость движения воды по ним не должна допускать засорения их взвешенными частицами сверху.

Выводы своего предложения проф. Терцаги проверил на опытах с моделью по рис. 33 и с моделью шпунтовой стенки, в лотке, загруженном промытым пе-

ском различных крупностей и с песком, содержащим примесь глины.

При этом отмечена хорошая согласованность наблюденных фильтрационных расходов с теоретическими (по Форхгаймеру) для чистых песков; для песков с примесью глины расход был много меньше теоретических. Опыты показали, что перед моментом вымыва (наступающим внезапно), вследствие взаимного перемещения частиц, фильтрационные свойства грунта резко изменялись—коэфициент фильтрации внезапно сильно увеличивался; действительные нагрузки на грунт (за сооружением) оказались значительно меньше теоретических вследствие, как указано, неучета сопротивлений перемещению частицы со стороны окружающих частиц. Опыт с водонепроницаемой нагрузкой на грунт показал незначительность увеличения критического уклона по сравнению с проницаемой нагрузкой в первом случае (дробь).

Явлению выпирания грунта проф. Терцаги дает следующее объяснение: во II зоне на каждую частицу грунта действует вес частицы (уменьшенный за гидростатическое давление) и гидродинамическое давление потока (по формуле 16), создавая в результате некоторое силовое поле, характеризуемое кривой давлений Кь. Частицы II воны двигались бы вдоль силовых линий поля, если бы не встречали препятствий со стороны расположенных ниже слоев; вследствие невозможности такого движения происходит сжатие грунта по направлениям силовых линий и растяжение по направлениям, им перпендикулярным, передаваемое по-

раздельной линии рірі на первую зону.

Рассматривая I зону, как подпорную стенку, и полагая, что давлению со стороны II зоны стенка эта сопротивляется только своим весом, можно представить случай, когда вследствие больших пьезометрических уклонов потока давление от II зоны будет настолько большим, а вес подпорной стенки I зоны настолько уменьшен гидродинамическим давлением, что стенка эта будет неустойчива и опрокинется, то есть будет выперта наружу. В таких случаях проф. Терцаги для устойчивости стенки предлагает применение дополнительных нагрузок (аналогично первому случаю), как бы увеличивающих вес подпорной стенки в размерах, определяемых условиями устойчивости стенки. Строя, как и в первом случае, эпюру дополнительных нагрузок для этого случая (эпюра В рис. 33) и суммируя ее с уже полученной эпюрой А, получают необходимую величиву и размещение дополнительных нагрузок за сооружением.

Сквозными флютбетами мы называем такие, в кладке которых делатотся отверстия для выхода грунтовых вод. Наличие отверстий создает разгрузку давления воды на флютбетитем самым позволяет делать его более тонким.

Подробнее расчет сквозных флютбетов рассматривается в отдельном труде 1; здесь будет дано приближенное и упрощенное решение. Выше отмечалась величина активной зоны потока по дну каналов, считая ее от концов флютбета на расстоянии около 0,5 — 0,8 от длины флютбета.

При сквозном флютбете выход воды через отверстия будет для нее более затруднителен, чем через грунт, поэтому активная зона по дву каналов увеличивается до 1—1,2 L, считая от концов непроницаемой части (L—длина горизонтальной проекции непроницаемой части флютбета). В пределах активной зоны, ограниченной вглубь на двойную глубину шпунтов, выклинивается около 0,7 всего фильтрационного расхода.

Очерчивая в этих пределах границу активной зоны и срединную струйку в ней, можно найти расход через нее.

$$Q = \omega_V = BT \frac{H}{I} \quad K \quad . \quad . \quad . \quad . \quad . \quad . \quad (22)$$

где В — ширина флютбета;

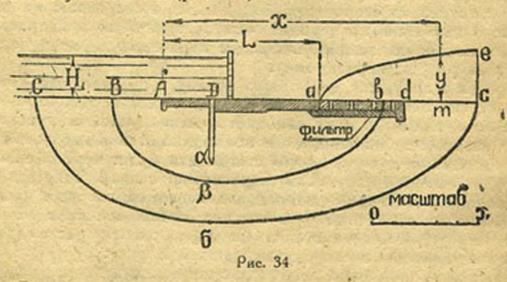
Т — средняя мощность залегания активной зоны;

Н — действующий (погашаемый) напор;

длина средней струйки;

К — коэфициент фильтрации грунта.

Величина Т может быть найдена как отношение площади активной зоны (по сечению ее вдоль флютбета) к длине І.


Расчет сквозных флютбетов в основном состоит в отыскании (или поверке) числа отверстий и размеров фильтра под ними, подбираемых так, чтобы скорости входа в фильтр были безопасны как против вмыва мельчайших частиц грунта в него, так и против вымыва частиц фильтра в отверстие. Для такого расчета необходимо знание протекаемого через каждое отверстие расхода воды, что может быть найдено следующим способом.

Построим кривую суммарных расходов на фильтрацию через дно нижнего бъефа, у которой ордината над границей активной зоны

$$ce = Q = 0,7 Q_0$$

где Оо-полный расход фильтрации.

Любая промежуточная ордината у такой кривой будет указывать фильтрационный расход от конца непроницаемой части флютбета, а до абсциссы этой ординаты, то есть на участке ат (рис. 34).

¹ F. Замарин. "Расчет сквозных флютбетов".

Для построения кривой суммарных расходов на фильтрацию ниже приводится таблица ордината у и горизонтальных расстояний от начала непроницаемой части, считая ее длину за единицу, то есть полагая L = 1; ординаты суммарных расходов даются пока в неизвестном масштабе. Так как абсцисса Ас-границы активной зоны, то есть точка С известна, то по таблице 8, зная х, находим для нее у; приравнивая эту ординату расходу, получаем отсюда масштаб ордината.

Чтобы найти расходы воды через отверстия, необходимо найти ординаты у над срединами промежутков между рядами отверстий у₁, у₂. Тогда через одно отверстие первого ряда будет протекать расход

где М - масштаб ординат расходов;

п - число отверстий в первом ряду.

Для расхода Q в через одно отверстие второго ряда будем иметь:

						Таблица 24
x	1	1,05	1,1	1.2	1,3	1,4
у	0	0,32	0,45	0,62	0,76	0,87
x	1,5	16	1,7	1,8	1,9	2,0
y	0 96	1.02	1,12	1,19	1,26	1,32
x	2.1	2 2	2 3	2,4	2,5	2.6
у	1,37	1.43	1,48	1,52	1.57	1,61

Назначение безопасной скорости входа в фильтр довольно неопределенно; можно на первых порах считать ее не меньшей отношения коэфициента фильтрации грунта основания к коэфициенту Бляя, рассматривая фильтр под отверстием устроенным в форме полусферы

$$v = \frac{K}{C} = \frac{Q}{\omega} = \frac{Q}{2\pi R^2} \dots (25)$$

откуда

$$R^{2} = \frac{Q}{2\pi v} = \frac{CQ}{2\pi K} \dots \dots (26)$$

Здесь R — радиус сферы;

v — скорость входа воды в фильтр;

Q — расход, фильтрующийся через отверстие.

В-формуле (25) коэфициент С указывает степень запаса в допускаемой скорости.

В действительности нет необходимости делать отдельные, под каждым отверстием, фильтры; проще и надежнее сделать общий фильтр в виде песчаногравелистого тюфяка, толщиною, равной наибольшему радиусу сферы. Отверстия близ конца флютбета работают слабо по сравнению с поставленными выше по течению, и казалось, что их можио бы и не делать; на самом деле, их надо делать, так как они отчасти облегчают работу верхних отверстий; кроме того, в случае закупорок верхних отверстий они усиливают свою работу, разгружая тем самым флютбет от давления воды.

Давления воды на сквозную часть флютбета невелики; конструктивная толщина флютбета здесь будет достаточна для воспринятия этого давления. Пример. Для флютбета, эскиз которого приведен на рис. 34, подсчитать толщину обратного фильтра.

Флютбет имеет следующие размеры: понур DA = 2,5 м, водобой Da = 5 м; сквозная часть ad = 4 м снабжена 8 рядами отверстий, поставленных через 1 м ряд от ряда и в шахмат через 0,5 в ряду; диаметр отверстий 8 см; шпунт $D\alpha = 3$ м. Коэфициент Бляя C = 8,5; коэфициент фильтрации грунта K = 0,0008 см/сек.

По номограмме рис. 18 для цельной части флютбета L находим толщину, считая $b_1 = AD: D\alpha = 0.83$ и $b_2 = Da: D\alpha = 1.67$; она оказывается равной 0.5 м для конца водобоя и 0.6 для его начала; толщину сквозной части примем 0.4 м.

Для расчета размера фильтра построим кривую суммарных расходов; для этого, наметив точки C_1 σ_1 с, проведем через них плавную кривую v:AC=0.8L; ас = L; $\alpha\sigma=\alpha D$. Ряды отверстий отстоят от конца водобоя, то есть от точки а на расстоянии 0-0.5-1.0-1.5-2-2.5,-3-3.5 м.

Пользуясь таблицей 23, построим ординаты кривой суммарных расходов для срединных значений, то есть для 0,25—0,75—1,25 и т. д. Принимая точку А за начало координат, длину L за единицу, получим следующие координаты кривой расходов.

				Табли	блица 23	
×	1,03	1,10	1,17	1,23	2,0	
y	0,21	0,44	0,57	0.66	1,32	
Суммарные расходы	0,84	1,75	2,26	2,62	5,25	
Расходы отверстий	0,84	0,91	0,51	0,36	_	

Концевая ордината получилась равной 1,32; найдем ее масштаб; для этого подсчитаем расход на погонный метр ширины флютбета в пределах активной зоны.

Строим срединную струйку, плавно проходящую через точки В, β , b, так, чтобы AB = 0.4 AC; $\alpha\beta = 0.4$ $\alpha\sigma$; ab = 0.4 ac; последнее соотношение принято в виду того, что интенсивность движения близ флютбета больше, чем у границы активной зоны.

Длина струйки, взятая с чертежа по масштабу, оказалась $l=17\,\mathrm{\,m}\,$ и средний уклон вдоль нее

 $i = H_1 : l = 2 : 17 = 0,117$

Средняя глубина активной зоны T найдется как отношение площади $CA \alpha d c \sigma C$ к l; или как среднее из AC, $\alpha \sigma$ и ас. B первом случае T=5,7, во втором T=5,5, в среднем T=5,6 м.

Теперь находим погонный расход активной зоны $\theta = 1.T.K.i = 100.560.0,0008.0,117 = 5,25 cm³/cek.$

Отсюда находим масштаб у

$$1,32 y = 5,25$$

и расходы для остальных х (см. 3 строку табл. 23). Далее, беря последовательно разность расходов (из последующего расхода предыдущий), находим расходы отверстий, так как их приходится по одному на погонный метр ширины флютбета. По формуле (26) находим наибольший радиус фильтра

$$R^2 = \frac{8,5.0,91}{6,28.0,0008}$$
, иди $R = 39$ см.

Делаем сплошной фильтр толщиною 40 см из смеси песков с преобладанием внизу мелкого песка, наверху крупного; отверстия в флютбете загружаются смесью крупного песка с гравием.

ΓΛΑΒΑ V

Конструкции флютбетов

§ 19. Формы флютбета

В рассмотренных выше примерах подошве флютбета придавалось или уступчатое очертание, или постепенно снижающееся. Последняя форма требует (см. рис. 8 на стр. 19) меньшего количества кладки, но несколько сложнее в производстве—при трамбовке клиновых слоев бетона, и затруднительна при кладке

флютбета из штучного камня.

Постепенное очертание подошвы флютбета выполняется при работе насухо, без водоотлива; при водоотливе, особенно в работе на слабых грунтах, когда приходится фронт работ разделять на отдельные участки, ограждаемые строительными шпунтами, неглубокими и менее плотными, чем расчетные шпунты—против фильтрации. В таких случаях в отдельных секциях флютбета кладка делается одинаковой толщины, с уступами от секции к секции (см. рис. 11 на стр. 21).

Рабочие шпунты следует ставить в начале водобоя, как разгружающие флютбет от давления; постановка шпунта вместо начала в конце водобоя увеличивает

выпирающее давление воды на флютбет.

В тех случаях, когда по расчету не требуется шпунта, все же зачастую его ставят длиною, равной глубине воды перед шлюзом Н, или несколько больше (до 50%). Объясняется это тем, что стык флютбета с грунтом действительно является наиболее слабой частью конструкции, особенно при закрытах щитах или при подпертой воде перед ними: там легче всего могут образоваться трещины и каверны, обнаружить которые своевременно трудно.

Сказанное выше о фокусах размыва заставляет делать шпунт (или зуб) в

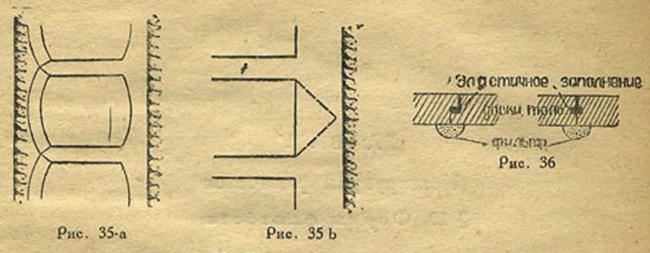
конце водобоя длиною около Н2.

§ 20. Швы

В крупных и средних сооружениях массивные флютбеты отделяются от стен и бычков сквозным швом для обеспечения независимости осадок грузных частей

(стены) от сравнительно легких (флютбета).

Однако, устройство таких швов не всегда является обязательным; так, в шлюзах типа безнапорных труб выгодно флютбет делать в форме обратных арок, опирающихся на продольные стены труб; толщина флютбета в таких случаях


редко превосходит конструктивную (рис. 35).

В открытых шлюзах, имеющих сравнительно узкие пролеты, бычки не отдолются от флютбета швами, если прямые, приведенные под 45° от концов бычков, пересекаются, не доходя подошвы флютбета (рис. 35). В таких случаях возможно толщиву флютбета уменьшать до этой точки пересечения, проверив флютбет на скалывание по грани бычка; полезно в таких конструкциях давать флютбету легкую армировку. Температурные и строительные швы желательно объединять, так как всякий шов, внося усложнение в конструкцию, является ее сла-

бым местом. Расстояния между ними делают около 5—12 м— в зависимости от расчетной амплитуды температур, мощности флютбета и оборудования работ: чем тоньше флютбет, тем ближе швы друг к другу.

Швы должны быть водонепроницаемы (рис. 36); полезно под ними делать

небольшие обратные фильтры.

§ 21. Толщина флютбета

Понур в шлюзах на сети, то-есть в сооружениях, работающих в выравненных, точно известных условиях, часто делается из глинобетона, защищенного мостовой; при работе шлюза данными отверстиями развивающиеся большие скорости на понуре заставляют вводить вместо мостовой бетонную облицовку, — по крайней мере, близ щитов. В речных сооружениях и в сооружениях первого класса понур делается из кладки (бетонной, бутовой и гибкой железобетонной). Толщина глинобетона делается 0,5—0,6 м, облицовка его плитами толщиной 0,10—0,20 м и массивной кладкой 0,25—0,40 м. Конструктивная толщина водобоя из массивной кладки по Бляю назначается для

$$\sqrt{}$$
 шлюзов - регуляторов $t = 0.55 \sqrt{H_1}$, промывных $t = 0.68 \sqrt{H_1}$ нерепадов $t = 0.55 \sqrt{P+H}$

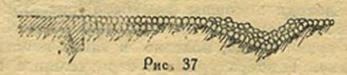
где Н — глубина воды над водосливом перепада.

Для ирригационных сооружений пределы эти могут быть понижены до:

t = 0,4 - 0,6 м для шлюзов-регуляторов;

t=0,5-0,7 м для промывных шлюзов;

t = 0,5 - 1,0 м для перепадов,


в зависимости от размеров сооружения (по расходу и падению воды) и материала (из бута толще, чем из бетона). Глинобетон в деревянных сооружениях кладется слоем $0.5-1.0\,$ м.

Сливная часть должна быть водопроницаема; поэтому она устраивается из мостовой, габионов, бетонных плит с отверстиями, железобетонных гибко соеди-

ненных плит, фашин, камышитовых плит и других.

Желательно шероховатость сливной части иметь близкую к шероховатости канала, чтобы получить более спокойный переход больших скеростей на водобое к малым в канале.

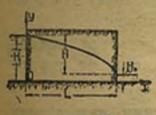
Вследствие ненадежности расчета сливной части, частых размывов ее, иногда рекомендуется за сооружением делать заранее яму, заполняя ее камнем; лучше эту яму отодвигать от водобоя примерно на длину флютбета (рис. 37).

¹ В. Д. Журин. "Основы гидротехнического расчета".

ΓΛΑΒΑ VI

Гидротехнический расчет в условиях свободного потока грунтовых вод

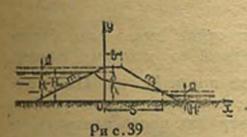
§ 22. Общее


Расчет флютбетов шлюзов с учетом свободного движения грунтовых вод кратко указан выше; здесь будут рассмотрены сооружения, грунтовая вода под которыми движется полностью или преимущественно в условиях свободного по-

К таким сооружениям относятся земляные плотины, сопрягающие сооружения (перепады, быстротоки, консоли) и водопроводящие сооружения (акведуки, дюкера, лотки).

Земляные плотины подробно рассматриваются в курсе плотин; здесь они будут освещены столько, сколько это необходимо для расчета других сооружений.

§ 23. Движение грунтовой воды через земляные плотины


Исходными зависимостями для построения депрессии и отыскания расхода на фильтрацию через плотины, поставленные на водонепроницаемое основание, служат уравнения, составленные Дюпю и для схемы рис. 38

$$q = K \frac{H_1^2 - H_2^2}{2L} \dots (27)$$

$$\frac{H_1^2 - y^2}{x} = \frac{H_1^2 - H_2^2}{L} \cdot \cdot \cdot \cdot \cdot \cdot (28).$$

Здесь q - расход фильтрации на погонный метр ширины плотины; К - коэфициент фильтрации грунта плотины.

В применении к расчету однородных плотин проф. Н. Н. Павловский 1 предлагает следующий способ: плотина разделяется на три части (рис. 39): верхняя-до оси ординат; средняя-от оси ординат до вертикали, проходящей через точку выклинивания грунтовых вод на нижнем откосе, и нижняя.

> Считая, что движение грунтовой воды в каждой части направлено по горизонтали, можно составить

уравнения установившегося расхода на погонный метр ширины плотины для каждой части и из них найти депрессию, а по ней и точку выклинивания грунтовых вод на низовом откосе. Для обозначений, указанных на рис. 39, уравнение расхода дая первой части будет

$$dq = K.i.\omega = K \frac{\lambda}{m(H_n - y)} dy \dots (29),$$

где т и т - заложение внутреннего и внешнего откосов.

^{1 &}quot;О фильтрации воды через вемляные плотины". 1930 г.

Здесь отношение теряемого напора х к горизонтальной длине пути равносильно среднему уклону потока

Интегрируя, получаем

$$\frac{q}{K} = \frac{\lambda}{m} \ln \frac{H_n}{H_n - h_1} \cdot (31).$$

Для второй части из уравнений Дюпюи получаем

$$\frac{q}{K} \frac{1}{2S} \left[h_1^2 - (a + H_2)^2 \right] \dots \dots (32).$$

Для третьей части движение рассматривается в двух зонах; первая зона—от точки выклинивания до уровня воды за плотиной; уклон потока принимается постоянным $i=1:m_1$ и расход

для второй зоны

$$dq_2 = K \frac{a}{m_1(a + H_2 - y)} dy \dots (34).$$

Интегрируя и суммируя оба расхода, получаем

$$\frac{q}{K} = \frac{a}{m_1} \left[1 + ln \frac{H_2 + a}{a} \right] \dots (35).$$

Из чертежа получаем четвертое уравнение

$$S = b + m_1 [H_a - (a + H_2)] \dots (36)$$

Решение этих четырех уравнений (31, 32, 35, 36) позволяет вычертить депрессию и найти расход q, если известен коэфициент фильтрации грунта плотины Для облегчения расчетов инж. Р. Р. Чугаевым составлены графики.

Полученное описанным способом положение депрессии определяется исключительно геометрическими элементами профиля плотины и не зависит от грунта ее, влияющего лишь на величину расхода фильтрации.

При наличии в плотине ядра расчет ведется по предыдущему для эскиза

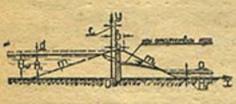


Рис. 40

плотины, в которой толщина ядра увеличена во столько раз, во сколько коэфициент фильтрации плотины больше коэфициента фильтрации ядра. Пересечения депрессии с очертанием такого гипертрофированного ядра наносят на нормальное его очертание (рис. 40).

Аналогично решается случай, когда вместо ядра плотина имеет глинобетонный (или из другого материала) защитный слой, уложенный по мокрому откосу.

При расположении плотины на проницаемом грунте проф. Н. Н. Павловский рекомендует следующий приближенный способ расчета фильтрации, полагая, что результаты получаются с некоторым запасом: фильтрация через плотину рассматривается отдельно от фильтрации основания; именно, предполагая основание водонепроницаемым, находят депрессию и расход по предыдущим формулам. Далее, считая плотину непроницаемой, рассматривают фильтрацию в основании ее уже в условиях напорного движения (рассмотренного нами выше). Такая схематизация явления еще возможна, если уровень грунтовых вод за плотиной близок к поверхности земли (2,5 м), или когда имеется поверхностная вода и за плотиной (H₂>0).

При более глубоком стоянии грунтовых вод за плотиной предполагаемый способ раздельного учета фильтрации уже неприменим; вода в таком случае движется цельным потоком, не выклиниваясь на низовом откосе. Устойчивость низового откоса зависит от факта выклинивания через него грунтовой воды. Инж. М. Е. К н о р р е, на основе теории предельного равновесия сыпучих тел, составил выражение предельного уклона депрессии в точке выхода ее на низовой откос.

В этом выражении проф. Н. Н. Павловский полагает, что депрессия касается низового откоса, и предлагает условия устойчивости низового откоса длясделанного допущения (касание) в следующем виде.

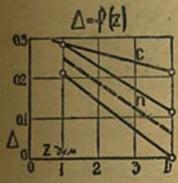
$$(\delta-1)$$
 $(1-\rho)$ $(tg-\varphi tg \alpha)$ $\cos \alpha > tg \alpha$ (37)

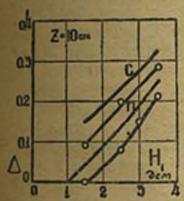
Здесь 6 - удельный вес грунта;

р - его порозность;

 α — угол наклона низового откоса (т. е. etg $\alpha = m_1$);

ф-угол естественного откоса грунта плотины.


§ 24. Эмпирические зависимости


Устойчивость низового откоса в значительной степени зависит от места выхода воды из него; почти всегда, начиная от места выхода воды и даже несколько выше, неукрепленный откос оплывает. С целью укрепления низового откоса плотины, в конце его от места выхода воды делают каменистую отсыпь, служащую опорой насыпи и ее фильтром—дренажем. Для назначения размеров фильтра необходимо знать точку выхода воды, для чего возможно использовать способ, предложенный проф. Н. Н. Павловским для непроницаемого основания. Из опытов И. Шмида с небольшими моделями плотин высота выхода воды h2 над дном нижнего бъефа получилась равной около h2 = 0,23 Н1 при непроницаемом основании и H2 = 0 и h2 = 0,18 Н1 при проницаемом основании толщиною 0,5 Н1 и H2 = 0.

Последнее соотношение несколько сомнительно из-за условий отвода воды (через дно в конце лотка). Материал моделей был преимущественно песок; от-

косы $m = m_1 = 2$.

В виду полной невыясненности высоты выклинивания грунтовой воды на низовом откосе при проницаемом основании, нами были поставлены опыты с плотинами высотою 40 см, на основании из того же грунта, толщиною 70 см. Грунт был следующего механического состава:

Pac. 41

	Гаолица 20				
d mm	0,5-0,25	0,25-0,05	0,05—0		
Песчаный	42	45	13		
Суглинистый	35	20	45		

На рис. 41 приведены графические зависимости, полученные из опытов над моделью плотины для обозначений:

 глубина от поверхности земли до уровня грунтовых вод за плотиною в см;

h₂ — высота выклинивания грунтовых вод в см; Н₁ — глубина воды перед плотиной в см;

$$\triangle = \frac{h_2}{H_1}$$
; m = 2,5; m₁ = 3,0.

Так как ширина поверху плотины мало влияет на движение грунтовых вод (как показали опыты инженера Р. Н. Давиденкова), то, рассматривая опытные плотины как модели натуральных в масштабе около 20—25,

можно считать высоту выклинивания воды на низовом откосе примерно равной

¹ Die Wasserbewegung in Dammkörper. 1928 r.

	Ta6.	ица 27		
Ни	4	6	8	10
Δ%	5	15	22	25

при близком залегании грунтовых вод 1,5—2,5 м от поверхности земли; при более глубоком залегании грунтовых вод \triangle значительно уменьшается.

Для суглинистых грунтов △ получилось несколько больше, чем для песчаных; не будучи уве-

ренными в точности такого вывода (из за немногочисленности опытов), примем и для суглинков те же △.

§ 25. Быстротоки

Гидротехнический расчет быстротоков почти не имеет освещения в литературе. Прием инж. Бляя, как и другие способы, основанные на напорном потоке,

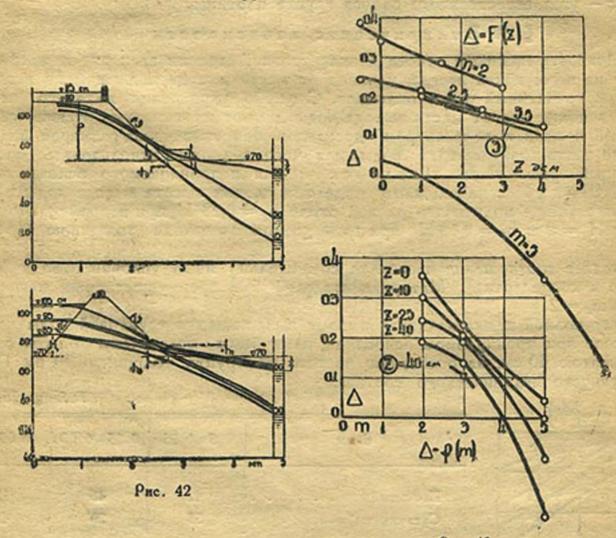


Рис. 43

здесь неприменимы. Наша попытка расчета в условиях свободного потока требовала своего подтверждения, для чего с теми же грунтами, что и выше, были проведены опыты с быстротоками. Проницаемое основание было 70 см; высота откоса 40 см, глубина воды над откосом 5 см; откос имел заложение т от 2 до 5. Для обозначений, указанных на рис. 42, результаты опытов с песчаными грунтами представлены графиками рисунка 43.

Для суглинка при глубоком залегании грунтовых вод $Z=0,40\,$ см (на рисунке кружке) выклинивание их оказалось ниже, чем для песка; для других Z рас-

хождения в высоте выклинивания для суглинка и песка-незначительны.

Примем, как и ранее, за основу данные опытов с песком, котя они и дают довольно высокие отметки выклинивания воды, что может служить до некоторой степени запасом предлагаемого нового приема расчета. Вода, просачиваясь из верхнего канала, на некотором пути своего движения не заполняет всех пор грунта и только ниже дна канала образует область грунтовой воды, движущейся по

^{1 &}quot;Гидротехнический расчет". Стр. 66-68.

закону Дарси. На высоте h2 над дном нижнего канала грунтовая вода выклинивается на откосе и далее пьезометрические давления потока, постепенно снижаясь, достигают дна канала.

Относительную высоту выклинивания грунтовой воды над дном, канала то есть

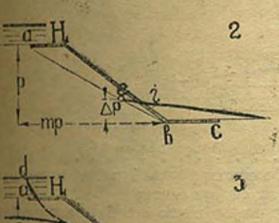
р, указывает следующая таблица, в зависимости от заложения откоса.

9	10000000			ıya 28			
Ne	m=	2	3	3,5	4.0	4,5	5
1	A	0,30 0,25	0,20 0,18	-	0.10	- 0	0
3	A	0.20	0,10	0			-

№ 1 дается для уровня грунтовых вод, стоящих не ниже дна канала; № 2-когда грунтовые воды стоят на 1,5-2,5 м ниже дна;

№ 3 - для более низкого залегания грунтовых вод.

Под заложением откоса под быстротоком считается отношение горизонтальной проекции непроницаемой части сооружения (то есть от начала понура до конца водобоя) к разности отметок верхнего и нижнего канала.


Из таблицы следует, что при скатах местности с заложением 4-5 грунтовая вода не оказывает давления, то есть для быстротоков с уклоном меньше 0,25 — 0.2 не требуется расчета флютбета; размеры его назначаются конструктивно.

Для более крутых быстротоков расчет флютбетов ведется по одному из

следующих способов.

1-й способ. Из точки а начала понура проводят прямые с различными заложениями т до горизонтали уровня грунтовых вод, если они залегают не ниже дна нижнего канала.

По табл. 26 на проведенных прямых находят точки, отстоящие по вертикали от уровня грунтовых вод (на рис. 44) от дна канала на расстоянии / Р (обозначения см. на оис. 44).

Плавная кривая, проведенная через такие точки, может быть принята за депрессию.

2-й способ. Для прямой ав, соединяющей начало понура и конец водоската, находится заложение m; по нему берут из табл. 26 A и из полученной точки е проводят прямую с уклоном і, берущимся из следующей таблицы (составлена по опытным данным).

	- Wenter	Таблица 29		
N•Nº	1	2	3	
i º/o	13—18	17—22	20-25	

В этой таблице нумерация соответствует, как и выше, глубинам стояния грунтовых вод. Прямая еі принимается за депрессию.

3 й способ. Проводится парабола с вершиной, лежащей на уровне воды верхнего канала над концом понура (точка d) и через конец водобоя с; горизонтальная ось параболы проходит через точку d. Нижняя часть кривой принимается за депрессию.

Описанные приемы построения депрессии пригодны для проницаемого основания, мощностью не меньшей высоты падения Р и примерно одинаковой водо-

пропускной способности с грунтом откоса.

Выступы флютбета, образованные ступенями перепада при вытянутости всего сооружения, не внесут заметных изменений в условия свободного движения грунтовых вод, поэтому рассмотренные выше способы построения кривой депрессии

возможно применить и к расчету флютбетов перепадов.

Опыты в лаборатории Среднеазиатского института водного хозяйства и наблюдения над грунтовыми водами под флютбетом Бурджарского перепада, подтвердили в общем правильность рассмотренного приема расчета. Оказалось, что при глубоком залегании грунтовых вод никакого давления на флютбет верхней части сооружения не имеется; уровень естественных грунтовых вод, подпитываемый потерянной водой из каналов, несколько приподнимается, не достигая, однако, флютбета сооружения в верхней и средней его части; лишь внизу сооружени * имеется давление от грунтовых вод на флютбет.

В грунте от дна верхнего канала до уровня грунтовых вод движение их направляется вниз; при этом вода течет отдельными струйками, не заполняя всех пустот грунта, и не оказывает никакого давления на флютбет. Под шахтой первого колодца и под флютбетом пятого колодца Бурджарского перепада нет грун-

товой воды, лесс под ней влажен (от 14,2% до 18,2% влажности).

Все это указывает на бесцельность постройки массивных сопрягающих сооружений; необходимо делать их флютбеты минимально конструктивной толщины. Равным образом, раз грунт у сооружения не насыщен водой, а только влажен, то угол естественного откоса его будет не меньше, а вернее-больше, чем для сухого состояния; отсюда ясно, что толщины продольных стенок сооружения должны быть значительно уменьшены против делаемых до сего времени.

Таким образом, мы имеем две формы движения грунтовых вод; первую - от

дна канала до уровня грунтовых вод, и вторую — от уровня их и ниже. В первой форме грунтовые воды не заполняют всех пустот грунта, во второй — заполняют все поры грунта. Однако, ни для той, ни для другой формы движения их закономерности точно пока неизвестны.

Поэтому приходится прибегать к приближенным приемам расчета, заведомо дающим расчет с запасом. Можно отметить, что здесь действительно коэфициент

запаса является в сущности "коэфициентом незнания".

При уровне грунтовых вод, совпадающим с дном нижнего канала, можно считать растекание грунтовых вод по кривой депрессии, имеющей внизу форму параболы (рис. 45).

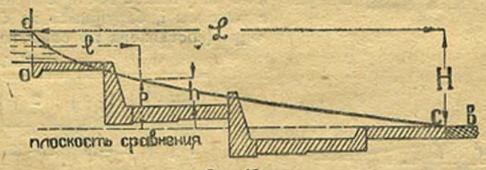


Рис. 45 $L(H-p)^2 = H^2 l.$ (38)

где Н — общий теряемый напор, равный разности уровней воды в верхнем канале и уровней грунтовых вод за сооружением;

р - пьезометрическое давление (в метрах водяного столба) на флютбет,

считаемое от уровня грунтовых вод за сооружением;

 1 — расстояние, измеряемое по горизонтали от начала непроницаемой части флютбета (понура) до рассматриваемой точки флютбета, для которой пьезометрическое давление равно р.

Определение толщины массивного флютбета t ведется по обычной формуле

(без учета напряжений кладки и трения в швах)

^{1. 8-}ступенчатый, Р = 17 м.

тде h — давление на флютбет, считаемое от верха флютбета до кривой депрессии;

удельный вес кладки;

п - козфициент запаса, рагный (см. ниже таблицу):

Наиболее неясной стороной описанного расчета является выбор длины кривой депрессии L, или, что то же самое, среднего ее уклона

При отношении L. H, равном или большем пяти, парабола проводится через точку C. Если L: H < 5, то парабола проводится через точку b, отстоящую от d на таком расстоянии, что заложение прямой db должно быть равным m = 5 для стояния грунтовых вод, близким к дну канала; m = 4 - 4,5 при уровне грунтовых вод на 1,5 - 2,5 м ниже дна канала и m = 3 - 4 при более глубоком залегании грунтовых вод.

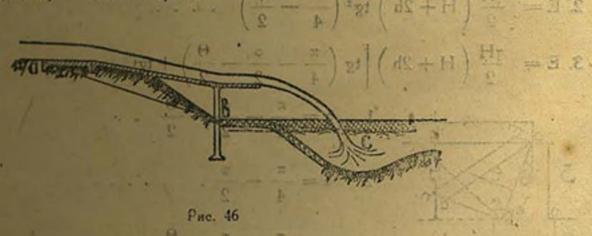
При выклинивании грунтовых вод выще дна канала следует точку С перене-

сти по вертикали на уровень грунтовых вод; остальное по прежнему.

§ 27. Флютбеты консольных перепадов

Движение грунтовой воды под флютбетами консольных перепадов имеет много общего с рассмотренными случаями. Очевидно, толщина флютбетов здесь назначеется конструктивно; длина же их должна быть достаточной для того, чтобы кригая депрессии, то есть кривая свободной поверхности грунтовых вод, не выклинивалась на земляной откос (под перепадом) выше уровня воды нижнего бъефа.

Таким образом, здесь расчет вемляного откоса аналогичен расчету откоса быстротоков, и в тех случаях, когда кривая депрессии будет выходить выше уровня воды за перепадом, потребуется устройство гравелисто-галечникового фильтра.


Первый способ здесь применяют, проводя прямые из точки а начала

флютбета, до уровня воды в воронке за консолью.

Применение второго способа ничем не отличается от описанного выше;

параболу третьего способа начинают из точки а.

Необходимо стремиться не только иметь депрессию, не выклинивающуюся на ружу (bc на рис. 46), но и заглубленную от поверхности грунта на величину капиллярного поднятия, то есть 1—1,5 м.

Необходимо отметить, что приведенные соображения о гидротехническом расчете на проницаемом основании для связных грунтов—тяжелых суглинков, тяжелых лессов—требуют дальнейшего уточнения и разработки в сторону уменьшения запасов в размерах частей сооружений.

ΓΛΑΒΑ VII

Подпорные стены

§ 28. Расчетные формулы:

В настоящей главе не излагаются основные законы устойчивости сыпучих грунтов, а приводятся лишь расчетные формулы давлений грунтов на подпорные стены для наиболее часто встречаемых их форм и дается, способ учета действия на стены фильтрационной воды.

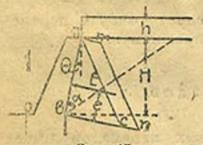
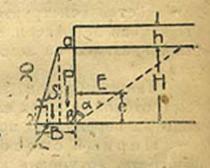


Рис. 47

На основании теории предельного равновесия сыпучих грунтов ниже даются выражения для давления грунта на стены; при этом предполагается, что давление нормально к стене, что грунт за стеной—однородный, то есть имеет постоянный объемный вес ү и постоянный угол ф естественного откоса

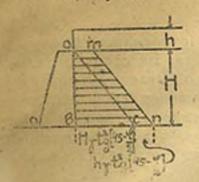

Обозначая через h —высоту временной загрузки по весу приведенной к объемному весу грунта.

ф угол призмы обрушения;

Е — равнодействующую давления грунта;

е — плечо ее от подошвы стены.

При остальных обозначениях, показанных на рис. 47—49, имеем следующее:


1.
$$E = \frac{\gamma H}{2} \left(H + 2h \right) \left[tg \left(\frac{\pi}{4} - \frac{\varphi}{2} + \frac{\Theta}{2} \right) - tg \Theta \right]^2 cos \Theta \dots$$
 (40)

2.
$$E = \frac{\gamma H}{2} \left(H + 2h \right) tg^2 \left(\frac{\pi}{4} - \frac{\varphi}{2} \right) \sim L \dots (41)$$

3.
$$E = \frac{\gamma H}{2} \left(H + 2h \right) \left[tg \left(\frac{\pi}{4} - \frac{\varphi}{2} - \frac{\Theta}{2} \right) + tg \Theta \right]^2 cos \Theta \dots (42)$$

Выше приводятся формулы для распора от земли Е и углы а между гранью тены и плоскостью скольжения для стен рис. 47—49.

Как видно из формул, давление земли на стенку в точности подобно гидростатическому для жидкости с объемным весом, равным произведению тригоно-

метрического множителя формул на 7 (см. рис. 50). Временная нагрузка h здесь в точности воспроизводит закон Паскаля для жидкостей, повышая в каждой точке стены давления на одну и ту же величину.

Точка приложения такого давления, считая по стене от

ее конца b, будет отстоять на

$$e = \frac{H}{3} \frac{H + 3h}{H + 2h}$$
 (46)

Рис. 50

Такое упрощенное представление о давлении земли, конечно, не точно, особенно для высоких стен и грунтов, обладающих связностью.

Приведем кратко расчет подпорных стен в условиях плоской задачи (рис. 43). Находятся: распор грунта E; веса элементов стены P — прямоугольника и S — треугольника. Реакция основания стены R составляется из горизонтальной составляющей T = E и вертикальной Q = P + S. Чтобы найти расстояние x, на котором реакция R пересекает основание стены оb, напишем уравнение моментов относительно точки

Здесь через малые буквы обозначены плечи сил.

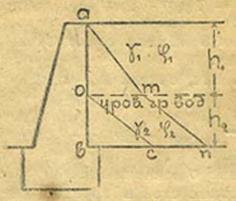
$$Rr = Qx = (P + S)x$$

Зная х, находим напряжения в основании

$$\sigma = \frac{Q}{B} \left[1 \pm \frac{3(B-2x)}{B} \right] \qquad (49)$$

если реакция проходит в средней трети основания, т. е. когда $x \le \frac{B}{3}$

Когда $x \le \frac{B}{3}$, то напряжения будут


Очевидно, что с не должны превосходить допускаемых. Устойчивость стены против опрокидывания требует превышения удерживающего момента над опрокидывающим, то есть

$$(P_P + S_S) \ge 1,2 \text{ Ee}$$

Устойчивость стены против сдвига требует превышения силы трения по основанию над распором грунта, то есть

При наличии фундамента (как на рис. 49) расчет сохраняется тот же; при связном грунте основания часто давление грунта ограничивают только высотой насыпи Н.

Для иных форм стен расчет подобен описанному. Расчет в условиях плоской задачи приемлем, когда длина стены значительна; при коротких стенах или для стен с поворотами в плане (устои шлюзов с обратными стенами) описанный расчет дает преувеличенную толщину; здесь следует рассчитывать не погонный метр стены, а целую, пространственную конструкцию стен.

Предыдущие соображения относились к случаю однородного по вляжности грунта. За стенами гидротехнических сооружений нередко бывает грунтовая вода (рис. 51), которая резко изменяет свойства грунта—понижает угол его естественного откоса и повышает объемный вес. Изменения с и у увеличивают давление грунта на стену; повышение это учитывалось двумя способами.

Рис. 51

1-й способ. Принимались новые фил для всего слоя грунта Н; расчетим ся по предыдущии формулам.

Способ этот очень грубый, так как им не учитывалась глубина стояния грув-

товых вод.

2-й способ. До уровня грунтовых вод давление грунта на стену находится по данным выше формулам; ниже грунтовых вод оно рассматривается составленным из двух частей—давления воды и давления вемли с уменьшенным объемным весом (7—1) грунта.

Способ этот не дает определенности в выборе значения ф и неверен в двой-

ном учете давления и земли и воды.

Неудовлетворительность рассмотренных способов заставляет предложить следующий: до уровня грунтовых вод расчет давления ведется обычным способом, давая в результате эпюру давлений аот (рис. 51), где

om =
$$\gamma$$
, hi tg² (45 - 0,5 φ ₁) (51)

Объемный вес и угол естественного откоса для верхнего слоя грунта прини-

маются как для сухого или слегка влажного грунта по справочникам.

Переходя к нижнему слою грунта, будем рассматривать верхний слой как временную нагрузку; тогда эпюрой давления на нижнюю часть стевы будет треугольник обс от давления мокрого грунта, построенной с ϕ_2 и γ_2 , как для насыщенного водой грунта (берутся из справочников) и параллелограмм оспт— от верхнего слоя.

Выявив действующие внешние силы, расчет на напряжения, опрокидывание и

сдвиг ведем по предыдущему.

OAT Zkou

STRHK CTCHAK HAM

Нени Редектор Казаков, А. П. Петредактор Балканский, Эм. Г. Сдана в произврдство 1 Подписана к печати 1

16-IX-32 r. 18/IV-33 r.

ACTOVICHIO CTOB.

ОГИЗ-Х1-713-НТЗв 33/4 печ. а. по 80 т. вн.

Tunar 5 100 ava

4-62 Вместо рисунка 20, помещенного на стр. 33, просьба пользоваться ниже прилагаемым. 25. 1.0. 0.5.8 Apening the 08 0916 Dobnerus Fir